Skip to main content

Lattice Quantum Chromodynamics

  • Chapter
Quarks, Leptons, and Beyond

Part of the book series: NATO ASI Series ((NSSB,volume 122))

Abstract

It is generally accepted that relativistic field theory is relevant in high energy physics. It is also recognized that even in QCD, which is asymptotically free (i. e., the interactions become weak at high enough energies) the scope of perturbation theory is very limited. In spite of the tremendous theoretical and experimental effort studying scaling, scaling violations, e+e, lepton pair creation, jets and so on, the answer to the question whether and to what extent is QCD the theory of strong interactions, is very vague. At present-day energies it is difficult to disentangle perturbative and non-perturbative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.G. Wilson, Phys. Rev. D10 (1974) 2445.

    ADS  Google Scholar 

  2. A partial list of summary papers on the subject: J.-M. Drouffe and C. Itzykson, Phys. Rep. 38C (1978) 133

    Article  MathSciNet  ADS  Google Scholar 

  3. L. P. Kadanoff, Rev. Mod. Phys. 49 (1977) 267

    Article  MathSciNet  ADS  Google Scholar 

  4. J. B. Kogut, Rev. Mod. Phys. 51 (1979) 659

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Parisi, XX Int. Conf. on High Energy Physics, Madison, Wisconsin, 1980 (Amer. Inst. Phys., New York, 1981) p. 1531; P. Hasenfratz, Int. Conf. on High Energy Physics, Lisbon, 1981, Proceedings p. 620; C. Rebbi, XXI Int. Conf. on High Energy Physics, Paris, 1982; P. Hasenfratz, in the Proceedings of the Johns Hopkins Workshop, Florence, 1982.

    Google Scholar 

  6. J. B. Kogut, Rev. Mod. Phys. 55 (1983) 775

    Article  ADS  Google Scholar 

  7. J.-M. Drouffe and J.-B. Zuber, Phys. Rep., to be published

    Google Scholar 

  8. M. Creutz, L. Jacobs and C. Rebbi, Phys. Rep. 95 (1983) 201.

    Article  ADS  Google Scholar 

  9. R.P. Feynman, Rev. Mod. Phys. 20 (1948) 367

    Article  MathSciNet  ADS  Google Scholar 

  10. R. P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill Book Comp., New York, 1965).

    MATH  Google Scholar 

  11. J. Schwinger, Phys. Rev. 115 (1959) 721

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. G. C. Wick, Phys. Rev. 96 (1954) 1124.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. K. Osterwalder and R. Schrader, Commun. Math. Phys. 42 (1975) 281

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. B. Simon, The p() 2 Euclidean (Quantum) Field Theory (Princeton University Press, Princeton, N.J., 1974)

    MATH  Google Scholar 

  15. E. Nelson in Constructive Quantum Field Theory (Springer Verlag, Berlin, 1973).

    Google Scholar 

  16. The independence of the continuum limit on the lattice structure is an important question. Unfortunately not much has been done until now in this field. An example is discussed by: W. Celmaster, Phys. Rev. D26 (1982) 2955.

    MathSciNet  ADS  Google Scholar 

  17. The exciting attempt of defining field theories on a random lattice will not be discussed here. We refer the interested reader to the literature: N.H. Christ, R. Friedberg and T.D. Lee, Nucl. Phys. B202 (1982) 89, B210 [FS6] (1982) 310, 337.

    Article  MathSciNet  ADS  Google Scholar 

  18. Half-integer spin fermion fields will be defined on lattice points also (Section 7). This is not very natural in the above sense. The consequences of a different procedure are discussed in: P. Becker and H. Joos, DESY preprint, DESY-82-031 (1982)

    Google Scholar 

  19. T. Banks, Y. Dothan and D. Horn, Phys. Lett. 117B (1982) 413.

    Google Scholar 

  20. For a detailed discussion on the non-Abelian case see: R. Balian, J.-M. Drouffe and C. Itzykson, Phys. Rev. D10 (1974) 3376.

    ADS  Google Scholar 

  21. B.E. Baaquie, Phys. Rev. D16 (1977) 2612.

    ADS  Google Scholar 

  22. L. Onsager, Phys. Rev. 65 (1944) 117

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M. E. Fisher and R.J. Burford, Phys. Rev. 156 (1967) 583.

    Article  ADS  Google Scholar 

  24. F. Wegner, J. Math. Phys. 12 (1971) 2259.

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Osterwalder and E. Seiler, Ann. Phys. (NY) 110 (1978) 440.

    Article  MathSciNet  ADS  Google Scholar 

  26. See for instance: D.J. Gross, Lectures at the Les Houches Summer School, 1975 (North-Holland P.C., ed. R. Balian).

    Google Scholar 

  27. Of course, this is not true for those dimensionful quantities which depend explicitly on momenta or co-ordinates like a scattering cross-section.

    Google Scholar 

  28. The literature on the renormalization group and on its applications to critical phenomena is enormous. The reader who wants to go beyond the level of this introduction is referred to the literature: K.G. Wilson and J. Kogut, Phys. Rep. 12C (1974) 75

    Article  ADS  Google Scholar 

  29. K. G. Wilson, Physica 73 (1974) 119.

    Article  ADS  Google Scholar 

  30. S. K. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, Mass., 1976)

    Google Scholar 

  31. M. E. Fischer, Rev. Mod. Phys. 46 (1974) 597

    Article  ADS  Google Scholar 

  32. Phase Transitions and Critical Phenomena, eds. C. Domb and M.S. Green (Academia, London, 19) vol. 6

    Google Scholar 

  33. K. G. Wilson, Rev. Mod. Phys. 47 (1975) 773, ibid 55. (1983) 583.

    Article  ADS  Google Scholar 

  34. A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B (1980) 165.

    ADS  Google Scholar 

  35. Actually, no explicit proof, valid in every order, exists in the literature. At the one-loop level it is easy to produce a general argument and the statement has been checked explicitly (see [16]). Although it is a common lore that the renormalized perturbation theory on the lattice is identical to that of the continuum prescriptions in every order it would be nice to have an explicit demonstration.

    Google Scholar 

  36. R. Dashen and D. Gross, Phys. Rev. D23 (1981) 2340

    ADS  Google Scholar 

  37. Kawai, R. Nakayama and K. Seo, Nucl. Phys. B189 (1981) 40

    ADS  Google Scholar 

  38. A. Hasenfratz and P. Hasenfratz, Nucl. Phys. B193 (1881) 210

    ADS  Google Scholar 

  39. P. Weisz, Phys. Lett. 100B (1981) 331

    ADS  Google Scholar 

  40. A. Gonzales-Arroyo and C.P. Korthals Altes, Nucl. Phys. B205 [FS5] (1982) 46

    Article  ADS  Google Scholar 

  41. H. S. Sharatchandra, H.J. Thun and P. Weisz, Nucl. Phys. B192 (1981) 205

    Article  ADS  Google Scholar 

  42. F. Karsch, Nucl. Phys. B205 [FS5] (1982) 285.

    Article  ADS  Google Scholar 

  43. A partial list of references: J.B. Kogut, R.B. Pearson and J. Shigemitsu, Phys. Rev. Lett. 43 (1979) 484

    Article  ADS  Google Scholar 

  44. J. B. Kogut and J. Shigemitsu, Phys. Rev. Lett. 45 (1980) 410

    Article  ADS  Google Scholar 

  45. J. B. Kogut, R.B. Pearson and J. Shigemitsu, Phys. Lett. 98B (1981) 63

    MathSciNet  ADS  Google Scholar 

  46. G. Münster, Phys. Lett. 95B (1980) 59

    ADS  Google Scholar 

  47. G. Münster, Nucl. Phys. B190 [FS3] (1981) 439 E., B205 [FS5] (1982) 648

    Article  ADS  Google Scholar 

  48. G. Münster and P. Weisz, Phys. Lett. 96B (1980) 119

    ADS  Google Scholar 

  49. K. Seo, Enrico Fermi Inst. preprint, EFI 82-10 (1982).

    Google Scholar 

  50. J. Smit, Nucl. Phys. B206 (1982) 309.

    Article  ADS  Google Scholar 

  51. A. Hasenfratz, E. Hasenfratz and P. Hasenfratz, Nucl. Phys. B181 (1981) 353

    Article  MathSciNet  ADS  Google Scholar 

  52. C. Itzykson, M. Peskin and J.B. Zuber, Phys. Lett. B95 (1980) 259

    MathSciNet  ADS  Google Scholar 

  53. M. Lüscher, G. Münster and P. Weisz, Nucl. Phys. B180 (1980) 1.

    Google Scholar 

  54. K. Binder, in Phase Transitions and Critical Phenomena, eds. C. Domb and M.S. Green (Academic Press, New York, 1976) vol. 5B

    Google Scholar 

  55. Monte Carlo Methods in Statistical Physics, ed. K. Binder (Springer Verlag, 1979).

    Google Scholar 

  56. After the pioneering work of M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42 (1979) 1390, where the d=4, Z2 gauge theory was investigated, and of M. Creutz, Phys. Rev. Lett. 43 (1979) 553, measuring for the first time the string tension in an SU(2) gauge theory, a large number of works has been published. For a detailed list of references, the reader is referred to the summary works in [2].

    Article  ADS  Google Scholar 

  57. For an interesting attempt which works for Abelian gauge theories, see: T. Sterling and J. Greensite, Nucl. Phys. B220 [FS8] (1983) 327.

    Article  ADS  Google Scholar 

  58. R. Bailan, J.-M. Drouffe and C. Itzykson, Phys. Rev. D11 (1975) 2104.

    ADS  Google Scholar 

  59. J.-M. Drouffe, Nucl. Phys. B170 [FS1] (1980) 211

    Article  MathSciNet  ADS  Google Scholar 

  60. E. Brezin and J.-M. Drouffe, Nucl. Phys. B200 [FS4] (1982) 93.

    Article  MathSciNet  ADS  Google Scholar 

  61. V. Alessandrini, V. Hakim and A. Krzywicki, Nucl. Phys. B215 [FS7] (1983) 109

    Article  ADS  Google Scholar 

  62. V. Alessandrini, CERN preprint, CERN-TH.3336 (1982)

    Google Scholar 

  63. J. Greensite and B. Lautrup, Phys. Lett. 104B (1981) 41

    ADS  Google Scholar 

  64. H. Flyvbjerg, B. Lautrup and J.B. Zuber, Phys. Lett. 110B (1982) 279

    ADS  Google Scholar 

  65. B. Lautrup, Niels Bohr Institute preprint, NBI-HE-82-8 (1982)

    Google Scholar 

  66. V.F. Müller and W. Rühl, Nucl. Phys. [FS6] (1982) 289.

    Google Scholar 

  67. S. Elitzur, Phys. Rev. D12 (1975) 3978.

    ADS  Google Scholar 

  68. K. Wilson, Lecture presented at the Abingdon Meeting on Lattice Gauge Theories, 1981.

    Google Scholar 

  69. B. Berg, A. Billoire and C. Rebbi, Ann. Phys. 142 (1982) 185

    Article  ADS  Google Scholar 

  70. B. Berg and A. Billoire, Phys. Lett. 113B (1982) 65

    ADS  Google Scholar 

  71. B. Berg, CERN preprint, CERN-TH.3327 (1982)

    Google Scholar 

  72. M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi, F. Rapuano, B. Taglienti and Zhang Yi-cheng, Phys. Lett. 110B (1982) 295

    ADS  Google Scholar 

  73. K. Ishikawa, M. Teper and G. Schierholz, Phys. Lett. 110B (1982) 399, ibid 116B (1982) 429, and DESY preprint, DESY-83-004 (1983).

    ADS  Google Scholar 

  74. S.K. Ma, Phys. Rev. Lett. 37 (1976) 461.

    Article  ADS  Google Scholar 

  75. R.H. Swendsen, Phys. Rev. Lett. 42 (1979) 859.

    Article  ADS  Google Scholar 

  76. K.G. Wilson, in Recent Developments of Gauge Theories, eds. G.’ t Hooft et al. (Plenum Press, 1980). A nice explanation of the MCRG ideas together with an application to the d=2 model is given by: S.H. Shenker and J. Tobochnik, Phys. Rev. B22, (1980) 4462. See also: A. Hasenfratz and A. Margaritis, CERN preprint, CERN-TH.3683 (1983).

    Google Scholar 

  77. R.H. Swendsen, Phys. Rev. Lett. 47 (1981) 1775.

    Article  ADS  Google Scholar 

  78. M. Creutz, Phys. Rev. Lett. 45 (1980) 313.

    Article  ADS  Google Scholar 

  79. It can be shown rigorously that the potential V(1) is a concave function: C. Borgs and E. Seiler, to be published.

    Google Scholar 

  80. G. Bhanot and C. Rebbi, Nucl. Phys. B180 [FS2] (1981) 469.

    Article  ADS  Google Scholar 

  81. C.B. Lang and C. Rebbi, Phys. Lett. 115B (1982) 137.

    MathSciNet  ADS  Google Scholar 

  82. For recent reviews, see: Q. Sbafi, in Int. Conf. on High Energy Physics, Lisbon, 1981, ed. J. Dias de Deus; L. Van Hove, in Quark Matter Formation and Heavy Ion Collisions, Bielefeld, 1982, eds. M. Jacob and H. Satz.

    Google Scholar 

  83. N. Cabibbo and G. Parisi, Phys. Lett. 59B (1975) 67

    ADS  Google Scholar 

  84. J. C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353

    Article  ADS  Google Scholar 

  85. P. D. Morley and M.B. Kislinger, Phys. Rep. 51C (1979) 63

    Article  MathSciNet  ADS  Google Scholar 

  86. M. B. Kislinger and P.D. Morley, Phys. Rev. D13 (1976) 2771

    ADS  Google Scholar 

  87. B. A. Freedman and L.D. McLerran, Phys. Rev. D16 (1977) 1130, 1147, 1169

    ADS  Google Scholar 

  88. J. I. Kapusta, Nucl. Phys. B148 (1979) 461

    Article  ADS  Google Scholar 

  89. V. Baluni, Phys. Rev. D17 (1978) 2092

    ADS  Google Scholar 

  90. E. V. Shuryak, Phys. Rep. 61C (1980) 71

    Article  MathSciNet  ADS  Google Scholar 

  91. D. J. Gross, R.D. Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53 (1981) 43.

    Article  MathSciNet  ADS  Google Scholar 

  92. A.M. Polyakov, Phys. Lett. 72B (1978) 477

    MathSciNet  ADS  Google Scholar 

  93. L. Susskins, Phys. Rev. D20 (1979) 2610

    ADS  Google Scholar 

  94. J.B. Kogut, CLNS-402 (1978).

    Google Scholar 

  95. C. Borgs and E. Seiler, Nucl. Phys. B215 [FS7] (1983) 125.

    Article  MathSciNet  ADS  Google Scholar 

  96. L.D. McLerran and B. Svetitsky, Phys. Lett. 98B (1981) 195

    MathSciNet  ADS  Google Scholar 

  97. Kuti, J. Polónyi and K. Szlachányi, Phys. Lett. 98B (1981) 199.

    Google Scholar 

  98. J. Engels, F. Karsch, I. Montvay and H. Satz, Nucl. Phys. B205 [FS5] (1982) 545, Phys. Lett. 101B (1981) 89.

    Article  ADS  Google Scholar 

  99. K. Kajantie, C. Montonen and E. Pietarinen, Z. Phys. C9 (1981) 253

    ADS  Google Scholar 

  100. I. Montvay and E. Pietarinen, Phys. Lett. 1 15B (1982) 151.

    Google Scholar 

  101. J. Kogut, M. Stone, H.W. Wyld, W.R. Gibbs, J. Shigemitsu, S.H. Shenker and D.K. Sinclair, Phys. Rev. Lett. 50 (1983) 393

    Article  ADS  Google Scholar 

  102. T. Celik, J. Engels and H. Satz, Phys. Lett. 125B (1983) 411.

    ADS  Google Scholar 

  103. J. Kogut, H. Matsuoka, M. Stone, H.W. Wyld, S.H. Shenker, J. Shigemitsu and D.K. Sinclair, Illinois preprint, ILL-(TH)-83-9 (1983); T. Celik, J. Engels and H. Satz, Bielefeld preprint, BI-TP 83/07 (1983); B. Svetitsky and F. Fucito, Cornell University preprint, CLNS 83/571 (1983).

    Google Scholar 

  104. J. Polónyi and K. Szlachányi, Phys. Lett. 110B (1982) 395.

    ADS  Google Scholar 

  105. B. Svetitsky and L.G. Yaffe, Phys. Rev. D26 (1982) 963.

    ADS  Google Scholar 

  106. N.S. Manton, Phys. Lett. 96B (1980) 328.

    MathSciNet  ADS  Google Scholar 

  107. J.-M. Drouffe, Phys. Rev. D18 (1978) 1174

    ADS  Google Scholar 

  108. P. Menotti and E. Onofri, CERN preprint, CERN-TH.3026 (1981).

    Google Scholar 

  109. J.B. Kogut and L. Susskind, Phys. Rev. D11 (1975) 395.

    ADS  Google Scholar 

  110. For an example, see the third reference in [18].

    Google Scholar 

  111. C.B. Lang, C. Rebbi, P. Salomonson and B.-S. Skagerstam, Phys. Lett. 101B (1981) 173, Phys. Rev. D26 (1982) 2028.

    ADS  Google Scholar 

  112. R.V. Gavai, F. Karsh and H. Satz, Nucl. Phys. B220 [FS8] (1983) 223.

    Article  ADS  Google Scholar 

  113. R.W.B. Ardili, M. Creutz and K.J.M. Moriarty, Phys. Rev. D27 (1983) 1956.

    ADS  Google Scholar 

  114. F. Gutbrod, P. Hasenfratz, Z. Kunszt and I. Montvay, Phys. Lett. 128B (1983) 415.

    ADS  Google Scholar 

  115. G. Parisi, R. Petronzio and F. Rapuano, Phys. Lett. 128B (1983) 418.

    ADS  Google Scholar 

  116. J.D. Stack, Santa Barbara preprint, to be published.

    Google Scholar 

  117. B. Berg and A. Billoire, Nucl. Phys. B221 (1983) 109.

    Article  ADS  Google Scholar 

  118. K. Ishikawa, A. Sato, G. Schierholz and M. Teper, DESY preprint, DESY 83-061 (1983).

    Google Scholar 

  119. C. Michael and I. Teasdale, Nucl. Phys. B215 (1983) 433.

    Article  ADS  Google Scholar 

  120. H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1981) 1792

    Article  ADS  Google Scholar 

  121. E. Marinari, G. Parisi and C. Rebbi, Phys. Rev. Lett. 47 (1981) 1795

    Article  ADS  Google Scholar 

  122. D. H. Weingarten, Phys. Lett. B109 (1982) 57

    MathSciNet  ADS  Google Scholar 

  123. H. Hamber, E. Marinari, G. Parisi and C. Rebbi, Phys. Lett. B108 (1982) 314

    ADS  Google Scholar 

  124. A. Hasenfratz, P. Hasenfratz, Z. Kunszt and C.B. Lang, Phys. Lett. B110 (1982) 282, Phys. Lett. B117 (1982) 81

    ADS  Google Scholar 

  125. F. Fucito, G. Martinelli, C. Omero, G. Parisi, R. Petronzio and F. Rapuano, Nucl. Phys. B210 (1982) 407

    Article  ADS  Google Scholar 

  126. G. Martinelli, C. Omero, G. Parisi and R. Petronzio, Phys. Lett. 117B (1982) 434

    ADS  Google Scholar 

  127. G. Martinelli, G. Parisi, R. Petronzio and F. Rapuano, Phys. Lett. 116B (1982)

    Google Scholar 

  128. D.H. Weingarten, Indiana University preprint, IUHET-82 (1982)

    Google Scholar 

  129. C. Bernard, T. Draper and K. Olynyk, Phys. Rev. Lett. 49 (1982) 1076

    Article  ADS  Google Scholar 

  130. H. Hamber and G. Parisi, Phys. Rev. D27 (1983) 208.

    ADS  Google Scholar 

  131. P. Hasenfratz and I. Montvay, Phys. Rev. Lett. 50 (1983) 309

    Article  ADS  Google Scholar 

  132. C. Bernard, T. Draper and K. Olynyk, Phys. Rev. D27 (1983) 227

    ADS  Google Scholar 

  133. R. Gupta and A. Patel, Caltech preprint, CALT-68-966 (1982)

    Google Scholar 

  134. G. Martinelli, G. Parisi, R. Petronzio and F. Rapuano, Phys. Lett. B122 (1983) 283

    ADS  Google Scholar 

  135. K. C. Bowler, E. Marinari, G.S. Pawley, F. Rapuano and D.J. Wallace, Nucl. Phys. B220 [FS8] (1983) 137

    Article  ADS  Google Scholar 

  136. M. Fukugita, T. Kaneko and A. Ukawa, KEK preprint, KEK-TH58 (1982).

    Google Scholar 

  137. H. Lipps, G. Martinelli, R. Petronzio and F. Rapuano, Phys. Lett. 126B (1983) 250

    ADS  Google Scholar 

  138. P. Hasenfratz and I. Montvay, DESY preprint, DESY 83-072 (1983)

    Google Scholar 

  139. K.C. Bowler, G.S. Pawley and D.J. Wallace, paper submitted to the EPS Conf., Brighton, 1983.

    Google Scholar 

  140. J. Kogut, M. Stone, H.W. Wyld, J. Shigemitsu, S.H. Shenker and D.K. Sinclair, Phys. Rev. Lett. 48. (1982) 1140; See also the first reference in [46] and

    Article  ADS  Google Scholar 

  141. J. Engels, F. Karsch and H. Satz, Phys. Lett. 113B (1982) 398

    ADS  Google Scholar 

  142. J. Engels and F. Karsch, Phys. Lett. 125B (1983) 481.

    ADS  Google Scholar 

  143. S.L. Adler, Brandeis University Summer Institute in Theoretical Physics, eds. S. Deser, M. Grisaru and H. Pendleton, (MIT Press, Cambridge, Mass, and London, 1970).

    Google Scholar 

  144. S.L. Adler, Phys. Rev. 177 (1969) 2426

    Article  ADS  Google Scholar 

  145. J. S. Bell and R. Jackiw, Nuov. Cim. 60A (1969) 47.

    Article  ADS  Google Scholar 

  146. L.H. Karsten and J. Smit, Nucl. Phys. B183 (1981) 103.

    Article  ADS  Google Scholar 

  147. K.G. Wilson, in New Phenomena in Subnuclear Physics, Erice, 1975, ed. A. Zichicchi (Plenum Press, New York, 1977).

    Google Scholar 

  148. The stochastic method proposed by: J. Kuti, Phys. Rev. Lett. 49 (1982) 183, has been used in a study on the effect of virtual quarks on the deconfining phase transition: J. Kuti and J. Polónyi, in the Proceedings of the Sixth Johns Hopkins Workshop, 1982, 15

    Article  ADS  Google Scholar 

  149. See also: B. Berg and D. Förster, Phys. Lett. 106B (1981) 323

    ADS  Google Scholar 

  150. Hopping parameter expansion is used by: H. Joos and I. Montvay, DESY preprint, DESY 83-046 (1983), to estimate the effect of virtual quark loops on the potential in SU(2), and by: I. Montvay, DESY preprint, DESY 83-074 (1983), to study the effect of virtual quarks on meson masses in SU(2).

    Google Scholar 

  151. A. Hasenfratz and P. Hasenfratz, Phys. Lett. 104B (1981) 489

    ADS  Google Scholar 

  152. C. B. Lang and H. Nicolai, Nucl. Phys. B200 [FS4] (1982) 135

    Article  ADS  Google Scholar 

  153. I. O. Stamatescu, Phys. Rev. D25 (1982) 1130.

    MathSciNet  ADS  Google Scholar 

  154. P. Hasenfratz and F. Karsch, Phys. Lett. 125B (1983) 308, and in the Proceedings of the 1983 Les Houches Meeting; J. Kogut, H. Matsuoka, M. Stone, H.W. Wyld, S. Shenker, J. Shigemitsu and D.K. Sinclair, Illinois preprint, ILL-(TH)/83-10 (1983)

    ADS  Google Scholar 

  155. A different prescription is suggested by: N. Bilic and R.V. Gavai, Bielefeld preprint, BI-TP83/05 (1983).

    Google Scholar 

  156. On the lattice this problem is discussed in detail by: B.E. Baaquie, Phys. Rev. D16 (1977) 2612.

    ADS  Google Scholar 

  157. V. Baluni, Phys. Rev. D17 (1978) 2092.

    ADS  Google Scholar 

  158. T. Banks and A. Ukawa, Tokyo University preprint, INS/Rep.-465 (1983).

    Google Scholar 

  159. T.A. DeGrand and C.E. DeTar, Colorado University preprint, COLO HEP 66 (1983).

    Google Scholar 

  160. P. Hasenfratz, F. Karsch and I.O. Starnatescu, CERN preprint, CERN-TH.3636 (1983).

    Google Scholar 

  161. F. Green and F. Karsch, CERN preprint, to be published.

    Google Scholar 

  162. T. Celik, J. Engels and H. Satz, Bielefeld preprint, BI-TP83/15 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hasenfratz, P. (1985). Lattice Quantum Chromodynamics. In: Fritzsch, H., Peccei, R.D., Saller, H., Wagner, F. (eds) Quarks, Leptons, and Beyond. NATO ASI Series, vol 122. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2254-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2254-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2256-4

  • Online ISBN: 978-1-4899-2254-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics