Skip to main content

Surface Chemistry and Bonding of Plasma-Aminated Polyaramid Filaments

  • Chapter
Molecular Characterization of Composite Interfaces

Part of the book series: Polymer Science and Technology ((POLS,volume 27))

Abstract

Thermomechanical performance of polyaramid-reinforced, resin-matrix composites often is limited by poor adhesion in the filament-matrix interphase region. This study describes a method to improve adhesion by forming covalent bonds across the interface through amine functional groups. Amine functionality has been introduced onto poly(p-phenylene terephthalamide), PPTA, filaments by exposure to ammonia or monomethyl amine RF glow discharge plasmas. Surface amine concentration rises rapidly upon plasma exposure and reaches a steady state in 30 to 60 sec. Weibull parameters for the filament strength distribution are unchanged by the plasma amination reaction. The amine groups are stable in air and water. They may be reacted directly with epoxide resins, or modified to functionalities that can react with other polymer matrix materials.

PPTA/epoxy laminates reinforced with aminated fabric have higher interlaminar tensile and peel strengths than laminates reinforced with untreated fabric. The failure mode changes from interphase dominated to a mixture of filament splitting and matrix cracking as surface amine concentration increases. Moisture absorption of untreated PPTA fabric/epoxy laminates occurs by a non-Fickian interfacial wicking mechanism. After amination, the absorption rate is reduced by a factor of three and occurs by a Fickian bulk diffusion mechanism. These results indicate that the mechanical properties and environmental resistance of polyaramid-reinforced composites may be improved by covalent bonding at the filament-matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Allred, ScD Thesis, Massachusetts Institute of Techno logy, Cambridge, MA, February 1983.

    Google Scholar 

  2. L. J. Broutman, “Modern Composite Materials,” L. J. Broutman and R. H. Krock, eds., Addison-Wesley, Reading, MA (1967) pp. 337–411.

    Google Scholar 

  3. L. B. Gresczuk, in “Interfaces in Composites,” ASTM STP 452, Am. Soc. Testing and Materials, Phil, PA (1969) pp. 42–58.

    Google Scholar 

  4. C. C. Chamis, in “Interfaces in Polymer Matrix Composites,” E. P. Pluddemann, ed., Academic Press, New York (1974), pp. 31–77.

    Google Scholar 

  5. G. B. McKenna, Poly.-Plast. Tech. and Engr., 5, 1 23 (1975).

    Article  Google Scholar 

  6. S. W. Tsai and H. T. Hahn, in “Adhesion and Absorption of Polymers,” L. H. Lee, ed., Plenum Press, New York (1979), pp. 463–472.

    Google Scholar 

  7. D. H. Kaelble, “Physical Chemistry of Adhesion,” John Wiley Sons, New York (1971).

    Google Scholar 

  8. D. A. Scolay in “Interfaces in Polymer Matrix Composites,” E. P. Plueddemann, ed., Academic Press, New York (1974) pp. 217–284.

    Google Scholar 

  9. A. T. DiBenedetto and L. Nicolais, “Advances in Composite Materials,” G. Piatti, ed., Applied Science, London (1978) pp. 153–181.

    Google Scholar 

  10. S. Wu, “Polymer Interface and Adhesion,” Marcel Dekker, New York, (1982).

    Google Scholar 

  11. W. A. Zisman, in “Adhesion and Cohesion,” P. Weiss, ed., Else vier, Amsterdam (1962) pp. 176–208.

    Google Scholar 

  12. E. P. Pluddemann, interfaces in Polymer Matrix Composites,“ E. P. Pluddemann, ed., Academic Press, New York (1974) pp. 173–216.

    Google Scholar 

  13. D. M. Riggs, R. J. Shuford and R. W. Lewis, in “Handbook of Composites,” G. Lubin, ed., Van Nostrand Reinhold, New York (1982) pp. 196–271.

    Book  Google Scholar 

  14. N. B. Moore, P. S. Bruno and S. C. Browning, Proc. AIAA/SAE 10th Propulsion Conf., Am. Inst. Aero and Astro, New York, (1974), paper 74–1208.

    Google Scholar 

  15. L. L. Clements, R. L. Moore, E. T. Mones and T. T. Chaio, Lawrence Livermore Laboratory Report UCID-16747, Livermore, CA (April 1975).

    Google Scholar 

  16. L. L. Clements and T. T. Chaio, Composites, 87 (1977).

    Google Scholar 

  17. C. F. Griffin, L. D. Fogg, R. L. Stone and E. G. Dunning, Natl. Aero, and Space Admin. Report NASA CR-14370 (July 1978).

    Google Scholar 

  18. R. E. Allred, H. K. Street, and R. J. Martinez, Proc. 24th Natl. SAMPE Symp. and Exhib., Soc. Adv. Matl. and Process Engr., Azusa, CA, 31 (1979).

    Google Scholar 

  19. V. A. Chase, Whittaker Corp. Report, Naval Air Systems Command Contract N00019–74-C-0055 (Jan. 1975).

    Google Scholar 

  20. C. C. Chaio, R. L. Moore and T. T. Chaio, Composites 161 (1977).

    Google Scholar 

  21. L. L. Clements, Proc. 1977 Flywheel Tech. Symp., Dept. of Energy, Wash., DC (1977).

    Google Scholar 

  22. P. Ehrburger and J. B. Donnet, “New Fibres and Their Composites,11 The Royal Soc., London (1980) pp. 87–97.

    Google Scholar 

  23. R. J. Morgan, E. T. Mones, W. J. Steele, and S. B. Dedtscher, “Proc. 12th Natl. SAMPE Tech. Conf..” Soc. Adv. Matl. and Process Engr., Azusa, CA (1980).

    Google Scholar 

  24. E. M. Wu, Wash. U., St. Louis, Report AMMRC-TR-80–19 (April, 1980 ).

    Google Scholar 

  25. R. E. Allred and D. K. Roylance, J. Mat. Sci., J. 8, 652 (1983).

    Article  ADS  Google Scholar 

  26. L. T. Drzal, M. J. Rich and P. F. Lloyd, Polym. Preprints, Am. Chem. Soc., 22, 199 (1981).

    Google Scholar 

  27. J. H. Greenwood and P. G. Rose, J. Mat. Sci., 9, 1809 (1974).

    Article  ADS  Google Scholar 

  28. S. V. Kulkarni, J. S. Rice and B. W. Rosen, Composites, 217 (1975).

    Google Scholar 

  29. R. E. Allred and A. M. Lindrose, “Composite Materials: Testing and Design,” ASTM STP 674, Am. Soc. for Testing and Matls, Phil., PA (1979) pp. 313–323.

    Google Scholar 

  30. W. S. Smith, Proc. Conf. on Advanced Composites-Special Topics, Technology Conferences, El Segundo, CA (1979).

    Google Scholar 

  31. R. E. Allred, J. Composite Mat., 15, 100 (1981).

    Article  ADS  Google Scholar 

  32. M. R. Wertheimer and H. P. Schreiber, J. Appl. Poly. Sci., 26, 2087 (1981).

    Article  Google Scholar 

  33. E. M. Petrie and J. C. Chottiner, Proc. 40th Annual SPE Tech. Conf. and Exhib.: ANTEC ‘82, Soc. Plast. Engr., St. Louis, MO 777 (May 1982).

    Google Scholar 

  34. L. S. Penn, F. A. Bystry and H. J. Marchionni, Poly. Composites, in press (1983).

    Google Scholar 

  35. T. S. Keller, A. S. Hoffman, B. D. Ratner and B. J. McElroy, “Physicochemical Aspects of Polymer Surfaces,” Plenum (1982).

    Google Scholar 

  36. J. R. Hollahan, B. B. Stafford, R. D. Falb, and S. T. Payne, J. Appl. Poly. Sci., 13, 807 (1969).

    Article  Google Scholar 

  37. G. C. S. Collins, A. C. Lowe and D. Nicholas, European Poly. J., 9, 1173 (1973).

    Article  Google Scholar 

  38. E. L. Lawton, J. Appl. Poly. Sci., 18, 1557 (1974).

    Google Scholar 

  39. J. C. Goan, U. S. Patent 3,776,829, Dec. 4, 1973.

    Google Scholar 

  40. V. P. Ivanova, G. D. Andreevskaja, J. Friedrich and J. Gahde, Acta Poly., 3l, 752 (1980).

    Article  Google Scholar 

  41. J. F. Evans and T. Kuwana, Anal. Chem., 51. » 358 (1979).

    Google Scholar 

  42. A. T. Bell, “Techniques and Applications of Plasma Chemistry,” J. R. Hollahan and A. T. Bell, eds., John Wiley Sons, New York (1974) pp. 1–56.

    Google Scholar 

  43. B. Chapman, “Glow Discharge Processes,” John Wiley Sons, New York (1980).

    Google Scholar 

  44. R. F. Gould, ed., “Chemical Reactions in Electrical Discharges,” Adv. in Chem. Series #80, Am. Chem. Soc., Wash., DC (1969).

    Google Scholar 

  45. M. Venugopalan, ed., “Reactions under Plasma Conditions,” Vols. 1 and 2, John Wiley and Sons, New York (1971).

    Google Scholar 

  46. D. T. Clark, A. Dilks and D. Shuttleworth, “Polymer Surfaces,” D. T. Clark and W. J. Feast, eds., John Wiley Sons, New York (1978) pp. 185–211.

    Google Scholar 

  47. M. Hudis, “Techniques and Applications of Plasma Chemistry,” J. R. Hollahan and A. T. Bell, eds., John Wiley Sons, New York (1974) pp. 113–147.

    Google Scholar 

  48. H. Yasuda, in “Plasma Chemistry of Polymers,” M. Shen, ed., Marcel Dekker, New Y ork (1976) pp. 15–52.

    Google Scholar 

  49. D. J. Carsson, L. H. Gan and D. M. Wiles, J. Poly. Sci., Poly. Chem. Ed., 16, 2353 (1978).

    Google Scholar 

  50. R. d’Agostino, F. Cramarossa, S. DeBenedictis and G. Ferraro, Plasma Chem. and Plasma Processing, jU 19 (1981).

    Google Scholar 

  51. M. Capitelli and E. Molinari, “Topics in Current Chemistry,” 90, Springer-Verlag, New York (1980) pp. 59–109.

    Google Scholar 

  52. L. Penn and F. Larsen, J. Appl. Poly. Sci., 23, 59 (1979).

    Article  Google Scholar 

  53. P. W. Morgan, Macromolecules, JL0, 1381 (1977).

    Google Scholar 

  54. T. I. Bair, P. W. Morgan and F. L. Killian, Macromolecules, 10, 1396 (1977).

    Article  ADS  Google Scholar 

  55. Standard Test Methods, Part 36, Am. Soc. for Testing and Matls., Phil, PA (1980).

    Google Scholar 

  56. W. S. Smith, E. I. duPont de Nemours, Wilmington, DE, private communication.

    Google Scholar 

  57. C. Hendrick, G. Grant and J. Howard, Millipore Corp., Bedford, MA, unpublished results.

    Google Scholar 

  58. R. E. Allred and N. H. Hall, Poly Engr. and Sci., 19, 907 (1979).

    Article  Google Scholar 

  59. Standard Test Methods, Part 38, Am. Soc. for Testing and Matls., Phil., PA (1980).

    Google Scholar 

  60. K. D. Boultinghouse, Sandia National Laboratories Report SAND 80–0975 (June 1980), available NTIS.

    Google Scholar 

  61. A. W. Adamson, “Physical Chemistry of Surfaces,” John Wiley Sons, New York (1976).

    Google Scholar 

  62. D. T. Clark, in “Characterization of Metal and Polymer Surfaces: Vol. 2,” L.-H. Lee, ed., Academic Press, New York (1977) pp. 5–51.

    Book  Google Scholar 

  63. D. T. Clark, in “Polymer Surfaces,” D. T. Clark and W. J. Feast, eds., John Wiley Sons, New York (1978) pp. 309–351.

    Google Scholar 

  64. R. Holm and S. Storp, Surf. Interface Anal., 2, 96 (1980).

    Article  Google Scholar 

  65. D. T. Clark and A. Dilks, in “Characterization of Metal and Polymer Surfaces: Vol. 2,” L.-H. Lee, ed., Academic Press, New York (1977) pp. 101–132.

    Book  Google Scholar 

  66. H. Yasuda, H. C. Marsh, S. Brandt, and C. N. Reilley, J. Poly. Sci., Poly. Chem., JL5, 991 (1977).

    Google Scholar 

  67. J. A. Tyalor, Physical Electronics Laboratories, Eden Prairie, MN, communication to J. R. Martin, MIT, March 1981.

    Google Scholar 

  68. D. T. Clark and A. Harrison, J. Poly. Sci., Poly. Chem., 19, 1945 (1981).

    Article  Google Scholar 

  69. C. Y. Kim, J. Evans and D. A. I. Goring, J. Appl. Poly. Sci., 15, 1365 (1971).

    Article  Google Scholar 

  70. D. Briggs, D. G. Ranee, C. R. Kendall and A. R. Blythe, Poly mer 21, 895 (1980).

    Article  Google Scholar 

  71. A. K. Sharma, F. Millich and E. W. Hellmuth, J. Appl. Poly. Sci., 26, 2205 (1981).

    Article  Google Scholar 

  72. S. P. Wesson and A. Tarantino, J. Non-Cryst. Solids, 38 /39, 619 (1980).

    Article  ADS  Google Scholar 

  73. S. L. Phoenix and E. M. Wu, presented at the IUTAM Symp. On Mech. Compos. Matls, Blacksburg, VA, Aug. 16–19, 1982.

    Google Scholar 

  74. S. L. Phoenix, Cornell University, private communication.

    Google Scholar 

  75. C. R. Noller, Chemistry of Organic Compounds, W. B. Saunders Co., London (1966).

    Google Scholar 

  76. M. G. Northolt, European Poly. J., JL0, 799 (1974).

    Google Scholar 

  77. S. P. Wesson, Owens-Corning Technical Center, Granville, OH, unpublished data.

    Google Scholar 

  78. P. Avakian, R. C. Blume, T. D. Gierke, H. H. Yang and M. Panar, Polym. Preprints, Am. Chem. Soc., 21, 9 (1980).

    Google Scholar 

  79. M. G. Bader, J. E. Bailey and I. Bell, J. Phys. D: Appl. Phys., J6, 572 (1973).

    Article  ADS  Google Scholar 

  80. T. U. Marston, A. G. Atkins and D. K. Felbeck, J. Mat. Sci., 9, 447 (1974).

    Article  ADS  Google Scholar 

  81. J. M. Augl, Naval Surface Weapons Center Report NKSWC/TR-79–51, Silver Spring, MD (March 1979), available NTIS.

    Google Scholar 

  82. J. Crank and G. S. Park, eds., “Diffusion in Polymers,” Academic Press, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allred, R.E., Merrill, E.W., Roylance, D.K. (1985). Surface Chemistry and Bonding of Plasma-Aminated Polyaramid Filaments. In: Ishida, H., Kumar, G. (eds) Molecular Characterization of Composite Interfaces. Polymer Science and Technology, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2251-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2251-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2253-3

  • Online ISBN: 978-1-4899-2251-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics