Skip to main content

Silane Coupling Agents for Basalt Fiber Reinforced Polymer Composites

  • Chapter
Molecular Characterization of Composite Interfaces

Part of the book series: Polymer Science and Technology ((POLS,volume 27))

Abstract

Basalt fiber, a new mineral fiber reinforcement comparable in strength and modulus to E-glass fibers, has been produced from naturally occurring basalt rock. The interfacial bond strength in basalt fiber-polymer systems has been investigated using a single fiber pull-out test method.

Basalt fibers, about 90 μm in diameter, were specially drawn for fiber pull-out tests and were treated with a number of ionic and nonionic silane coupling agents under a variety of experimental conditions, changing solution pH and concentration, aging time, and fiber treatment time. The values of pull-out stresses were measured for treated and untreated fibers embedded both in epoxy and polyester matrix resins. The surfaces of treated and untreated fibers and those of pulled-out specimens were examined by scanning electron microscopy. Details of debonding and modes of failure were revealed in scanning electron micrographs.

The measured pull-out stresses are higher than those reported for E-glass fibers. The effect of iron and other metal oxides present in basalt fibers is manifested in the effect of pH of silane treatment on pull-out stress. The existence of different isoelectric points (IEPS) for different sites on the basalt fiber surface is indicated. The controlling effects of silane hydrolysis, condensation, orientation on the fiber surface, and chemical bonding to the fiber and polymer are revealed in the trends of interfacial bond strengths with experimental variables. The contribution of radial compressive stresses caused by thermal mismatch, and resin shrinkage during curing to the measured pull-out stress is also evident.

The results of pull-out stresses show that silane coupling agents are effective in improving interfacial bond strength in basalt fiber systems and that basalt fiber has excellent potential as a reinforcing fiber for polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. H. Hess and A. Poldervaart, “Basalts,” Interscience, New York, 1967, p. 221.

    Google Scholar 

  2. Chemical and Engineering News, 1973, June 4, p. 49; 1974, April 29, p. 18.

    Google Scholar 

  3. Kaswant in Kastellaun, Sprechsaal fur Keramik, Glas Email 91, 577, (1968).

    Google Scholar 

  4. E. D. Andreevskaya and T. A. Plisko, Steklo i Keramika 8, 15 (1963).

    Google Scholar 

  5. V. A. Dubrovskii, V. A. Rychko, T. M. Bachilo and A. G. Lysyuk, Steklo i Keramika 12, 18, (1968).

    Google Scholar 

  6. V. A. Darenskii, Yu N. Dem’yanenko, P. P. Kozlovskii, K. V. Manzhurnet, A. I. Kukarkin, R. T. Ozhugaryan and K. S. Badolyan, Steklo i Keramika 12, 38, (1968).

    Google Scholar 

  7. R. V. Subramanian, H. F. Austin, and R. A. V. Raff, Final Report, Pacific Northwest Regional Commission, Contract No. NR-3001, (1975).

    Google Scholar 

  8. R. V. Subramanian, H. F. Austin, and T. J. Y. Wang, Final Report, Pacific Northwest Regional Commission, Contract No. NR-3017, (1976).

    Google Scholar 

  9. R. V. Subramanian and H. F. Austin, U. S. Patent 4,149, 866 (1979).

    Google Scholar 

  10. R. V. Subramanian, H. F. Austin and T. J. Y. Wang, SAMPE Quarterly 8 (11), 1 (1977).

    Google Scholar 

  11. R. V. Subramanian and H. F. Austin, “Basalt Fibers” in Handbook of Fillers and Reinforcements for Plastics, Ed. Harry S. Katz and John V. Milewski, Van Nostrand Reinhold, New York (1978), p. 504.

    Google Scholar 

  12. J. B. Shortall and H. W. C. Yip, J. Adhesion, 7, 311 (1976).

    Article  Google Scholar 

  13. J. P. Favre and J. Perrin, J. Mater. Sci., 7, 1113 (1972).

    Article  ADS  Google Scholar 

  14. R. V. Subramanian, J. Jakubowski, and F. D. Williams, J. Adhesion 11, 185 (1978).

    Article  Google Scholar 

  15. J. P. Favre and M. C. Merienne, Int. J. Adhesion and Adhesives, 1, 311 (1981).

    Article  Google Scholar 

  16. K. H. Shu, “Interfacial Bonding in Basalt Fiber-Polymer Compo site Systems,” Thesis, Washington State University (1978).

    Google Scholar 

  17. R. C. DeVekey and F. J. Majumdar, Magazine Concr. Res. 20, 229 (1968).

    Article  Google Scholar 

  18. P. Lawrence, J. Mater. Sci., 7, 1 (1972).

    Article  ADS  Google Scholar 

  19. H. W. C. Yip and J. B. Shortall, J. Adhesion 155 (1976).

    Google Scholar 

  20. E. P. Plueddemann, Interfaces in Polymer Matrix Composites, Academic Press, (1974), p. 174.

    Google Scholar 

  21. E. P. Plueddemann, SPI Conf. Reinf. Plastics/Composites Div., 19-A (1969).

    Google Scholar 

  22. H. Ishida, S. Naviroj, S. K. Tripathy, J. J. Fitzgerald, and J. L. Koenig, J. Polym. Sci. Polym. Phys. Ed., 20, 701 (1982).

    Google Scholar 

  23. M. E. Schrader, in Interfaces in Composites, E. P. Plueddemann Ed., Academic Press, (1974) p. 110.

    Google Scholar 

  24. R. L. Kaas and J. L. Kardos, Polymer Eng. and Sci., 11, No. 1, 11 (1971).

    Google Scholar 

  25. E. P. Plueddemann, “Cationic Silane Coupling Agents for Thermo plastics,” in Polymer Plastics Technology and Engineering, Vol. 2, Ed. Louis Naturman, Marcel Dekker, New York (1973).

    Google Scholar 

  26. E. P. Plueddemann and G. L. Stark, Mod. Plast., March, 74 (1974).

    Google Scholar 

  27. E. P. Plueddemann, Proc. SPI Conf. Reinf. Plastics/Composites Div., 21-E (1973).

    Google Scholar 

  28. F. J. Kahn, Appl. Phys. Letters, 22, 386 (1973).

    Google Scholar 

  29. F. J. Kahn, and G. N. Taylor, cited in E. P. Plueddemann, Mod. Plast., 76 (March 1974).

    Google Scholar 

  30. G. A. Parks, Advances Chem. Series, 67, 121 (1967).

    Google Scholar 

  31. A. S. Michales and J. C. Bolger, I & EC Fundamentals, 3, 14 (1964).

    Article  Google Scholar 

  32. I. Iwasaki, S. T. B. Cooke and A. F. Columbo, U. S. Bur. Mines Rept. Invest., 5593 (1960).

    Google Scholar 

  33. J. C. Bolger and A. S. Michales, “Interface Conversion for Polymer Coatings,” Philip Weiss, G. Dale Cheever, Eds., Elsevier, New York (1968).

    Google Scholar 

  34. H. J. Modi and D. W. Fuerstenau, Trans, AIME, 217, 381 (1960).

    Google Scholar 

  35. R. V. Subramanian and H. F. Austin, Int. J. Adhesion and Adhe-sives, 1, 50 (1980).

    Article  Google Scholar 

  36. F. J. Boerio and F. J. Dillingham, in Proc. Intl. Conf. Adhe sive Joints: Their formation, Characteristics and Testing, K. L. Mittal, Ed., Plenum Press (1983), to be published.

    Google Scholar 

  37. R. Wong, J. Adhesion, 4, 1971 (1972).

    Article  Google Scholar 

  38. J. Patrick and A. K. Rastogi, Amer. Cer. Soc. Bull., 53, (9), 631 (1973).

    Google Scholar 

  39. H. Ishida, J. L. Koenig, J. Polym. Sci., Polym. Phys. Ed., 17, 615 (1979).

    Google Scholar 

  40. J. H. Hill, Ph.D. Thesis, Cornell University (1967).

    Google Scholar 

  41. H. Ishida and J. L. Koenig, Polym. Eng. Sci. 18, 128 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Subramanian, R.V., Shu, KH.H. (1985). Silane Coupling Agents for Basalt Fiber Reinforced Polymer Composites. In: Ishida, H., Kumar, G. (eds) Molecular Characterization of Composite Interfaces. Polymer Science and Technology, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2251-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2251-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2253-3

  • Online ISBN: 978-1-4899-2251-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics