Skip to main content

A Systematic Approach to Induce New Catalytic Activities in Proteins

  • Chapter
Polymeric Materials in Medication

Part of the book series: Polymer Science and Technology ((POLS,volume 32))

Abstract

A novel, systematic method (1, 2) to induce new catalytic activities in proteins, has been shown to generate esterase activities from bovine pancreatic ribonuclease (RNase) (3, 4). The conformation of RNase is perturbed by exposure to pH 3. 0, followed by the addition of a known competitive inhibitor of chymotrypsin, namely indole-3-propionic acid (IPA). The newly formed conformation is preserved by cross-linking with glu-taraldehyde. The modified-RNase preparations hydrolyzed L-tryptophan ethyl ester (L-TrEE) optimally at two pH values, 6.0 (acid-esterase) and 7.5 (neutral-esterase). The two es-terase activities have been separated by ammonium sulfate precipitation, and further purified by gel chromatography on Biogel P-30. Nearly 100 fold purification of both the ester-ases was achieved by these two steps. The highest activities for the purified esterases were observed with amino acid esters containing aromatic side chains. With these substrates, both esterases exhibited Michaelis-Menten kinetics. While the acid-esterase hydrolyzed L-TrEE, benzoyl-L-arginine ethyl ester (BAEE) and L-tyrosine ethyl ester (L-TEE) equally well, the neutral-esterase had a much higher activity towards L-TrEE than the other two substrates. Tryptophan competitively inhibited the acid-esterase, but did not affect the neutral-esterase at a concentration up to 2 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. H. Keyes, Patent No 525924, Commonwealth of Australia (1983).

    Google Scholar 

  2. M. H. Keyes, Patent No. GB 2088880 B UK (1984).

    Google Scholar 

  3. S. Saraswathi and M. H Keyes, Enz. Microb. Tech., 6, 97 (1984).

    Article  Google Scholar 

  4. S. Saraswathi and M. H. Keyes, Polymeric Materials, 51, 198 (1984).

    Google Scholar 

  5. O. R. Zaborsky, Immobilized Enzymes, CRC Press, Cleveland, 1974.

    Google Scholar 

  6. M. H. Keyes, in: Kirk-Othmer: Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., 9, 3rd Edition, 1980, p. 148.

    Google Scholar 

  7. I. Chibata, “Immobilized Enzymes, Research & Development”, Kodansha, Tokyo, 108 (1978).

    Google Scholar 

  8. A. M. Klibanov, Anal. Biochem, 93, 1 (1979).

    Article  Google Scholar 

  9. M. Komiyama, and M. L. Bender, in: “Chemistry of Enzyme Action”, M. I. Page, Ed., Elsevier Press, New York, 1984, p. 505.

    Chapter  Google Scholar 

  10. I. Tabushi, Acc. Chem. Res., 15, 66 (1982).

    Article  Google Scholar 

  11. B. U. Nair, and G. C. Dismukes, J. Am. Chem. Soc, 105, 124 (1983).

    Article  Google Scholar 

  12. R. Breslow, in: “Bioinorganic Chemistry”, R. F. Gould, Ed., Am. Chem. Soc, Washington D.C., 1971, p. 21.

    Chapter  Google Scholar 

  13. R. Breslow, Science, 218, 532 (1982).

    Article  ADS  Google Scholar 

  14. W. J. le Noble, S. Srivasstava, R. Breslow, & G. Trainov, J. Am. Chem. Soc, 105, 2795 (1983).

    Article  Google Scholar 

  15. G. Cram and H. D. Katz, J. Am. Chem. Soc, 105, 135 (1983).

    Article  Google Scholar 

  16. D. J. Cram, Science, 11, 1177 (1983).

    Article  ADS  Google Scholar 

  17. J. Shu and I. M. Klotz, Bioorganic Chemistry, 8, 283 (1979).

    Article  Google Scholar 

  18. W. J. Spetnagel and I. M. Klotz, J. Am. Chem. Soc, 98, 8199 (1976).

    Article  Google Scholar 

  19. J. Shu, I. S. Scarpa and I. M. Klotz, J. Am. Chem. Soc, 98, 7060 (1976).

    Article  Google Scholar 

  20. G. P. Royer, “Fundamentals of Enzymology”, John Wiley & Sons, New York, 1982, p. 205.

    Google Scholar 

  21. A. Komoriya and I. M. Chaiken, J. Biol. Chem., 257, 2599 (1982).

    Google Scholar 

  22. C. DiBello, A. Lucchiari, O. Buso and M. Tonellato, Int. J. Pept. Protein Res., 23, 61 (1984).

    Google Scholar 

  23. M. Juillerat and G. A. Homdanberg, Int. J. Pept. Protein Res., 18, 335 (1981).

    Article  Google Scholar 

  24. G. A. Homdanberg, G. A. Komoriya, M. Juillerar, I. M. Chaiken, Proc. VIth Am. Pept. Symt., 597 (1979).

    Google Scholar 

  25. R. Geiger, V. Teetz, V. Konig, and R. Obermeir, in: “Semisynthetic Peptides and Proteins”, R. E. Offord and C. DiBello, Eds., Academic Press, New York, 1978, p. 141.

    Google Scholar 

  26. K. Inouye, K. Watnabe, Y. Tochino, M. Kobayshi and Y. Shigata, Biopolymers, 20, 1845 (1981).

    Article  Google Scholar 

  27. R. Obermeir and G. Seipka, Process Biochemistry, 2, 29 (1984).

    Google Scholar 

  28. R. E. Offord, in: “Semisynthetic Proteins”, John Wiley & Sons, New York 1980, p. 156.

    Google Scholar 

  29. R. E. Offord, in: Proc. 17th Eur. Peptide Symp., K. Balha & P. Malon, Eds., Walter de Gruyter, New York, 1983, p. 31.

    Google Scholar 

  30. A. J. Wilkinson, A. R. Fersht, D. M. Blow, P. Carter and G. Winter, Nature, 307, 187 (1984).

    Article  ADS  Google Scholar 

  31. A. R. Fersht, J. P. Shi, A. J. Wilkinson, D. M. Blow, P. Carter, M. M. Y. Wayne and G. P. Winter, Angewandte Chemie, 23, 467 (1984).

    Article  Google Scholar 

  32. H. L. Levine and E. T. Kaiser, J. Am. Chem. Soc, 100, 7670 (1978).

    Article  Google Scholar 

  33. F. T. Slama, S. R. Oryganti and E. T. Kaiser, J. Am. Chem. Soc, 103, 6211 (1981).

    Article  Google Scholar 

  34. E. T. Kaiser, H. L. Levine, T. Outski, H. E. Fried and R. M. Dupyere, in: “Biomimetric Chemistry”, D. Dolphin, et al, Eds, Am. Chem, Soc, Washington, D.C., 1980, p. 35.

    Chapter  Google Scholar 

  35. H. L. Levine and E. T. Kaiser, J. Am. Chem. Soc, 102, 342 (1980).

    Article  Google Scholar 

  36. I. Okura, S. Nakamura and M. Kobayashi, Bull. Chem. Soc. Jpn., 54, 3794 (1981).

    Article  Google Scholar 

  37. D. Guillochon, J. M. Ludot, L. Esclade, B. Cambou and D. Thomas, Enzyme Microb. Tech., 4, 96 (1982).

    Article  Google Scholar 

  38. S. W. Englander and N. R. Kallenbach, Quarterly Rev. Biophys., 16, 521 (1984).

    Article  Google Scholar 

  39. M. R. Eftnik and C. A. Ghiron, Anal. Biochem., 114, 199 (1981).

    Article  Google Scholar 

  40. D. A. Torchia, Ann. Rev. Biophys. Bioeng., 13, 125 (1984).

    Article  Google Scholar 

  41. G. A. Petsko and D. Ringe, Ann. Rev. Biophys. Bioeng., 13, 331 (1984).

    Article  Google Scholar 

  42. J. A. Richardson, Adv. Protein Chem., 34, 167 (1981).

    Article  Google Scholar 

  43. T. Creighton, Prog. Biophys. Molec Biol., 33, 231 (1978).

    Article  Google Scholar 

  44. J. Janin and S. J. Wodak, Prog. Biophys. Molec Biol., 42, 21 (1983).

    Article  Google Scholar 

  45. W. S. Bennet and R. Huber, CRC Critical Rev. Biochem., 15, 291 (1984).

    Article  Google Scholar 

  46. N. Citri, in: Adv. Enzymology, vol 37, A. Meister, Ed., John Wiley & Sons, 1973, p. 397.

    Google Scholar 

  47. G. Weber, Adv. Prot. Chem., 29, 1 (1978).

    Article  ADS  Google Scholar 

  48. R. Wolfenden, Acc. Chem. Res., 5, 10 (1972).

    Article  Google Scholar 

  49. G. E. Lienhard, Science, 180, 149 (1973).

    Article  ADS  Google Scholar 

  50. Z. Wasylewski and P. M. Horowitz, Biochem. Biophys. Acta., 701, 12 (1982).

    Article  Google Scholar 

  51. O. W. Howarth and I. Y. Lian, Biochemistry, 23, 3522 (1984).

    Article  Google Scholar 

  52. J. B. Prenberg, J. M. Schaffert and H. H. Sussman, J. Biol. Chem., 211, 327 (1981).

    Google Scholar 

  53. D. Kirschenbaum, Anal. Chem., 80, 193 (1977).

    Google Scholar 

  54. E. M. Crook, A. P. Mathais and B. R. Rabin, Biochem. J., 74, 234 (1960).

    Google Scholar 

  55. G. G. Hammes and F. G. Walz, Biochem. Biophys. Acta., 198, 604 (1970).

    Article  Google Scholar 

  56. A. A. Green and W. L. Hyges, Methods Enzymol., 1, 76 (1955).

    Google Scholar 

  57. J. A. Zivin and D. R. Waud, Life Sci., 30, 1407 (1982).

    Article  Google Scholar 

  58. H. A. Scheraga and J. A. Rupley, in: Adv. Enzymol., 24, A. Meister, Ed., John Wiley & Sons, 1962, p. 161.

    Google Scholar 

  59. G. Kartha, J. Bello, and D. Karker, Nature, 213, 862 (1967).

    Article  ADS  Google Scholar 

  60. C. A. Deakyne and L. C. Allen, J. Am. Chem. Soc, 101, 3951 (1979).

    Article  Google Scholar 

  61. R. F. Foster and C. Niemann, J. Am. Chem. Soc, 77, 3370 (1955).

    Article  Google Scholar 

  62. R. A. Wallace, A. N. Kurtz and C. Niemann, Biochemistry, 2, 824 (1963).

    Article  Google Scholar 

  63. V. Yu. K. Shvyadas, I. Yu. Galaev, and I. V. Berezin, Biokhimiya, 45, 481 (1979).

    Google Scholar 

  64. T. Inagami and J. M. Sturtevant, J. Biol. Chem., 235, 1019 (1960).

    Google Scholar 

  65. B. Atkinson and F. Mavituna, in: “Biochemical Engineering and Biotechnology Handbook”, Macmillan Publishing Ltd., New York, 1983, p. 478.

    Google Scholar 

  66. F. E. Brot and M. L. Bender, J. Am. Chem. Soc, 91, 7187 (1969).

    Article  Google Scholar 

  67. M. L. Bender and F. J. Kezdy, Ann. Rev. Biochem., 34, 49 (1965).

    Article  Google Scholar 

  68. R. Okachi, Y. Hashimato, M. Kawamori, R. Katsumata, K. Takayama, and T. Nara, in: “Enzyme Engineering”, T. Chibata, S. Fukui & L. B. Wingard, Eds., 6, Plenum Press, 1982, p. 81.

    Google Scholar 

  69. M. C. Flickinger, Biotech, and Bioeng., (Suppl. 22), 1, 27 (1980).

    Google Scholar 

  70. B. Zerner, R. O. M. Bond and M. L. Bender, J. Am. Chem. Soc, 86, 3674 (1964).

    Article  Google Scholar 

  71. B. F. Erlanger, N. Kokowsky and W. Cohen, Arch. Biochem. Biophys., 95, 271 (1961)

    Article  Google Scholar 

  72. M. L. Bender, G. E. Clement, G. E. Kezdy and H. D. A. Heck, J. Am. Chem. Soc, 86, 3680 (1964)

    Article  Google Scholar 

  73. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 193, 265 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saraswathi, S., Keyes, M.H. (1985). A Systematic Approach to Induce New Catalytic Activities in Proteins. In: Gebelein, C.G., Carraher, C.E. (eds) Polymeric Materials in Medication. Polymer Science and Technology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2245-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2245-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2247-2

  • Online ISBN: 978-1-4899-2245-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics