Skip to main content

Changes in Genetic Organization and Expression in Aging Cells

  • Chapter
Molecular Biology of Aging

Part of the book series: Basic Life Sciences ((BLSC,volume 35))

Abstract

In this paper we review our recent studies on the human fibroblast model of cellular aging, which illustrate how physiological decline and certain age-dependent diseases may develop at the cellular level. We will demonstrate that the basis of these changes may involve a variety of alterations in genetic structure and expression, and further, that their stochastic nature probably accounts for the progressive individual variation that occurs between aging persons and between their component cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop, J. M., 1983, Cellular oncogenes and retrovirus, Ann. Rev. Biochem., 52:301–354.

    Article  PubMed  Google Scholar 

  • Chang, E.H., Furth, M.E., Scolnick, E.M., and Lowry, D.R., 1982, Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey Murine Sarcoma virus, Nature London, 4: 479–483.

    Article  Google Scholar 

  • Cristofalo, V., 1972, Animal cell cultures as a model system for the study of aging, Adv. Gerontol. Res., 4:45–79.

    Google Scholar 

  • Dell’Orco, R.T., Mertens, J.G. and Kruse, Jr. P.F., 1973, Doubling potential calendar time, and senescence of human dipolid cells in culture, Exp. Cell. Res., 77:356–360.

    Article  Google Scholar 

  • Goldstein, S. 1971, The Biology of Aging, N. Engl. J. Med., 285:1120–1129.

    Article  PubMed  Google Scholar 

  • Goldstein, S. 1978, Human genetic disorders which feature accelerated aging, in: “The Genetics of Aging,” E.L. Schneider, ed., Plenum Press, New York. pp. 171–224.

    Chapter  Google Scholar 

  • Goldstein, S. 1980. Do we differentiate ourselves to death?, Cell., 20:571–573.

    Article  Google Scholar 

  • Goldstein, S. and Shmookler Reis, R.J., 1984, Genetic modifications in cellular aging, Mol. Cell. Biochem., 64:15–30.

    Article  PubMed  Google Scholar 

  • Goldstein, S., Littlefield, J.W., and Soeldner, J.S., 1969, Diabetes mellitus and aging: Diminished plating efficiency of cultured human fibroblasts, Proc. Natl. Acad. Sci., 64:155–160.

    Article  PubMed  Google Scholar 

  • Goldstein, S., Moerman, E.J., Soeldner, J.S., Gleason, R.E., and Barnett, D.M., 1978, Chronologic and physiologic age affect replicative lifespan of fibroblasts from diabetic, prediabetic and normal donors, Science, 199:781–782.

    Article  PubMed  Google Scholar 

  • Goldstein, S., Moerman, E.J., Soeldner, J.S., Gleason, R.E., and Barnett, D.M., 1979, Diabetes mellitus and genetic prediabetes: Decreased replicative capacity of cultured skin fibroblasts, J. Clin. Invest., 63:358–370.

    Article  PubMed  Google Scholar 

  • Goldstein, S. and Singal, D.P., 1974, Senescence of cultured human fibroblasts: mitotic versus metabolic time, Exp. Cell. Res., 88:359–364.

    Article  PubMed  Google Scholar 

  • Harley, C.B. and Goldstein, S., 1978, Cultured human fibroblasts: Distribution of cell generations and a critical limit, J. Cell. Physiol., 97:509–516.

    Article  PubMed  Google Scholar 

  • Harley, C.B., Shmookler Reis, R.J., and Goldstein, S., 1982, Loss of repetitious DNA in proliferating somatic cells may be due to unequal recombination, J. Theoret. Biol., 94:1–12.

    Article  Google Scholar 

  • Hayflick, L., and Moorehead, P.S., 1961, The serial cultivation of human diploid cell strains, Exp. Cell. Res., 25:585–621.

    Article  PubMed  Google Scholar 

  • Hayflick, L., 1965, The limited in vitro lifetime of human diploid cell strains, Exp. Cell. Res., 37:614–636.

    Article  PubMed  Google Scholar 

  • Kohn, R.R., 1971, Diseases and aging, in: “Principles of Mammalian Aging” pp. 110–119, Prentice-Hall Inc., New Jersey.

    Google Scholar 

  • Leder, P., 1982, The genetics of antibody diversity. Sci. Am. 246:102–115.

    Article  PubMed  Google Scholar 

  • Macieira-Coelho, A., Ponten, J., and Philipson, L., 1966, The division cycle and RNA synthesis in diploid human cells at different passage levels in vitro, Exp. Cell Res., 42:673–684.

    Article  PubMed  Google Scholar 

  • Macieira-Coelho, A., 1977, Kinetics of the proliferation of human fibroblasts during their lifespan in vitro, Mech. Ageing Dev., 6:341–343.

    Article  Google Scholar 

  • Manuelidis, L., and Wu, J.C., 1978, Homology between human and simian repeated DNA, Nature London, 276:92–94.

    Article  PubMed  Google Scholar 

  • Martin, G.M., 1979, Proliferative homeostasis and its age-related aberrations, Mech. Ageing Dev., 9:385–391.

    Article  PubMed  Google Scholar 

  • Martin, G.M., Sprague, C.A., and Epstein, C.J., 1970, Replicative lifespan of cultivated human cell. Effects of donor’s age, tissue and genotype, Lab. Invest., 23:86–92.

    PubMed  Google Scholar 

  • Martin, G.M., Sprague, C.A., Norwood, T.H., and Pendergrass, W.R., 1974, Clonal selection, attenuation and differentiation in an in vitro model of hyperplasia, Am.J. Path., 74:137.

    PubMed  Google Scholar 

  • Martin, S.L., Voliva, C.F., Burton, F.H., Edgell, M.H., and Hutchinson, C.A. III., 1984, A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein, Proc. Natl. Acad. Sci., 81: 2308.

    Article  PubMed  Google Scholar 

  • Parada, L.F., Tabin, C.J., Shih, C., and Weinbert, R.A., 1982, Human EJ bladder carcinoma oncogene is homologic of Harvey Sarcoma virus RAS gene, Nature London, 297:474–478.

    Article  PubMed  Google Scholar 

  • Phillips, P.D., Kaji, K., and Cristofalo, V.J., 1984, Progressive loss of the proliferative response of senescing WI-38 cells to platelet-derived growth factor, epidermal growth factor, insulin, transferrin, and Dexamethasone, J. Gerontol., 39:11–17.

    Article  PubMed  Google Scholar 

  • Plisko, A., and Gilchrest, B.A., 1983, Growth factor responsiveness of cultured human fibroblasts declines with age, J. Gerontol., 35:513–518.

    Article  Google Scholar 

  • Razin, A., and Riggs, A.D., 1980, DNA methylation and gene function, Science., 210:604–610.

    Article  PubMed  Google Scholar 

  • Riabowol, K.T., Shmookler Reis, R.J., and Goldstein, S., 1984 a, Extrachromosomal covalently closed circular DNA of human diploid fibroblasts: cloning and initial characterization, Submitted, Mol. and Cell. Biology.

    Google Scholar 

  • Riabowol, K.T., Goldstein, S., and Shmookler Reis, R.J., 1984 b, Extrachromosomal nuclear cccDNA clones from human lymphocytes are homologous to the putatively mobile HindIII-KpnI repetitive sequence family, 1984 U.C.L.A. Symposium on Molecular and Cellular Biology, Steamboat Springs, Colorado, USA., J. Cell. Biochem., Suppl. 8B:139.

    Google Scholar 

  • Saunders, G.F., Shigeru, S., Saunders, P.P., Arrighi, F.E., and Hsu, T.C., 1972, Populations of repeated DNA sequences in the human genome, J. Mol. Biol., 63:323–334.

    Article  PubMed  Google Scholar 

  • Schmid, C.W., and Jelinek, W.R., 1982, The Alu family of dispersed repetitive sequences, Science, 216:1065–1070.

    Article  PubMed  Google Scholar 

  • Schneider, E.L., and Mitsui, Y., 1976, The relationship between in vitro cellular aging and in vivo human age, Proc. Natl. Acad. Sci., 73:3584–3588.

    Article  PubMed  Google Scholar 

  • Shih, C., and Weinbert, R.A., 1982, Isolation of a transforming sequence for a human bladder carcinoma line, Cell, 29:161–169.

    Article  PubMed  Google Scholar 

  • Shmookler Reis, R.J., and Goldstein, S., 1980, Loss of reiterated DNA sequences during serial passages of human diploid fibroblasts in vitro, Cell, 21:739–749.

    Article  PubMed  Google Scholar 

  • Shmookler Reis, R.J., and Goldstein, S., 1982 a, Variability of DNA methylation patterns during serial passage of human diploid fibroblasts, Proc. Natl. Acad. Sci., USA, 79:3949–3953.

    Article  PubMed  Google Scholar 

  • Shmookler Reis, R.J., and Goldstein, S., 1982 b, Interclonal variation in methylation patterns for expressed and non-expressed genes, Nucleic Acids. Res., 10:4293–4304.

    Article  PubMed  Google Scholar 

  • Shmookler Reis, R.J., and Goldstein, S., 1983, Mitochondrial DNA in mortal and immortal human cells, J. Biol. Chem., 258:9078–9085.

    PubMed  Google Scholar 

  • Shmookler Reis, R.J., Goldstein, S., and Harley, C.B., 1980, Is cellular aging a stochastic process? Mech. Ageing Dev., 13:393–395.

    Article  PubMed  Google Scholar 

  • Shmookler Reis, R.J., Lumpkin, C.K., McGill, J.R., Riabowol, K.T., and Goldstein, S., 1983, Extrachromosomal circular copies of an Inter-Alu unstable sequence in human DNA are amplified during in vitro and in vivo ageing, Nature London, 301:394–398.

    Article  PubMed  Google Scholar 

  • Smith, J.R., and Whitney, R.G., 1980, Interclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging, Science, 207:82–84.

    Article  PubMed  Google Scholar 

  • Srivastava, A., Norrie, J.S., Shmookler Reis, R.J., and Goldstein, S., 1984, c-Ha-ras-1 proto-oncogene is amplified and overexpressed in normal human fibroblasts during replicative senescence in vitro, Submitted J. Biol. Chem.

    Google Scholar 

  • Walker, P.M.B., 1971 “Repetitive” DNA in higher organisms, Prog. Biophvs. Mol. Biol., 23:145–190.

    Article  Google Scholar 

  • Yanishevsky, R., Mendelsohn, M.L., Mayall, B.H., and Cristofalo, V., 1974, Proliferative capacity and DNA content of aging human diploid cells in culture: a cytophotometric and autoradiographic analysis, J. Cell Physiol., 84:165–170.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldstein, S., Srivastava, A., Riabowol, K.T., Reis, R.J.S. (1985). Changes in Genetic Organization and Expression in Aging Cells. In: Woodhead, A.D., Blackett, A.D., Hollaender, A. (eds) Molecular Biology of Aging. Basic Life Sciences, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2218-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2218-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2220-5

  • Online ISBN: 978-1-4899-2218-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics