Skip to main content

Design Principles and Operation Characteristics

  • Chapter
Gas Discharge Closing Switches

Part of the book series: Advances in Pulsed Power Technology ((APUT,volume 2))

Abstract

The hydrogen thyratron is a low pressure gaseous device that performs as a switch in a high power pulse circuit similar to the one shown in Fig. 7–1. Upon application of a grid pulse, the thyratron goes from the open to closed condition, thereby transferring energy from a storage system, usually a pulse forming network (PFN) or a capacitor, to a load such as a microwave tube or laser device. At the conclusion of the energy transfer, the switch goes through a recovery period during which it reverts from the closed to an open state. It is then subjected to a recharging of the energy storage system in preparation for the next cycle. This sequence of events is illustrated in Fig. 7–2 where the time dependence of the thyratron’s anode voltage is shown. The invention of the thyratron is credited to Langmuir (1918), while the development of the hydrogen thyratron has been credited to Germeshausen (1948), although as early as 1928, Hull had described the design and operation of rare gas filled thyratrons. Gilmour (1985) has published the proceedings of the Thyratron and Modulator Symposiums wherein the development of the device is detailed. Goldberg and Rothstein (1961) and Fogelson et al., (1974) have published comprehensive reviews on early thyratron development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allis, W.P. and Rose, D.J., 1954, Transition from Free to Ambipo-lar Diffusion,” Phys.Rev., 93:84.

    Article  MATH  Google Scholar 

  • Allis, W.P., 1956, “Research Studies on Hydrogen Thyratrons, Vol. I,” Edgerton, Germeshausen and Grier. Boston.

    Google Scholar 

  • Brode, R.B., 1933, The Quantitative Study of the Collision of Electrons with Atoms,” Phys. Rev.. 5:257.

    Google Scholar 

  • Collidge, A.W., 1958, Progress Report on Large Ceramic Hydrogen Thyratrons, Proc. of the 5th Symposium on Hydrogen Thyratrons.:43 (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Cook, K.G., 1958, Hydrogen and Deuterium Filled Thyratron, Conf. Records Power Modulator Symposium,:5-15.

    Google Scholar 

  • Creedon, J., 1964, Cathode-Current Dependence on Pulse Width for Hydrogen Thyratrons, IEEE Trans. on Communications. and Electronics. 83:582.

    Google Scholar 

  • Erwin, D.A. and Gundersen, M.A., 1986, Measurement of excited-state densities during high-current operation of a hydrogen thyratron using laser-induced fluorescence, Appl. Phys. Lett., 48:1773.

    Article  Google Scholar 

  • Fogelson, T.B., Breusova, L.N., and Vagin, L.N., 1974, “Impulse Hydrogen Thyratrons,” Sov. Radio. Moscow.

    Google Scholar 

  • Friedman, S., 1982, Instant-Start Cathodes for High Average Power Hydrogen Thyratrons, IEEE Conference Record of the 15th Power Modulator Symposium.:127 IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Germeshausen, K.J., 1948, Switches for Line-Type Pulsers, in “Pulse Generators,” G.N. Glasoe and J.V. Lebacqz, eds. McGraw-Hill, New York.

    Google Scholar 

  • Gilmour, A.S., 1985, “Conference Records of the Power Modulator Symposia,” State University of New York at Buffalo, Amherst, NY.

    Google Scholar 

  • Goldberg, S., 1956, “Research Study on Hydrogen Thyratron,-Vol. II,” Edgerton, Germeshausen and Grier, Boston.

    Google Scholar 

  • Goldberg, S., and Riley, D., 1957, “Research Study on Hydrogen Thyratron-Vol. III,” Edgerton, Germeshausen and Grier, Boston.

    Google Scholar 

  • Goldberg, S., and Riley, D., 1958, Reservoirs in Hydrogen Thyratrons, Proc. of Fifth Symposium on Hydrogen Thyratrons.:3 (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Goldberg, S., and Rothstein, J., 1961, Hydrogen Thyratrons, Ad-vances in Electronics and Electron Physics, 14:207, Academic Press, New York.

    Article  Google Scholar 

  • Goldberg, S., 1962, Cathode Phenomena and Life in Hydrogen Thyratrons, Proc. of 7th Symposium on Hydrogen Thyratrons,: 5, (see A.S. Gilmour, 1985).

    Google Scholar 

  • Grunwald, H., McGowan, J., and Creedon, J., 1985, Continuous Operation of a 250 KW Thyratron, Digest of 5th IEEE Pulsed Power Conference. IEEE, New York.

    Google Scholar 

  • Guha, S., Kunc, J., Cole, H., and Gundersen, M., 1982, “Fundamental Processes in Hydrogen Thyratrons,” IEEE Conference Record of 15th Power Modulator Symposium,:119 IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Hamilton, J., Merz, S., Plante, R., Turnquist, D., Reinhardt, N., Creedon, J., and McGowan, J., 1978, Development of a 40 kV Megawatt Average Power Thyratron (MAPS-40), IEEE Conference Record of XIII Pulse Power Modulator Symposium.:135, IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Hannay, N.B., MacNair, D., and White, A.H., 1949, Semiconducting Properties in Oxide Cathodes, J. Appl. Phys. 20:669.

    Article  Google Scholar 

  • Herrman, G., and Wagener, S., 1951, “The Oxide Coated Cathode,” Chipman & Hall, London.

    Google Scholar 

  • Huartson, A., and Menown, H., 1962, Hydrogen Reservoir Materials, Proc. of the 7th Symposium on Hydrogen Thyratrons and Modulators.:2 (see A.S. Gilmour, 1985).

    Google Scholar 

  • Hull, A.W., 1928, “Gas Filled Thermionic Tubes,” Transactions AIEE.:753.

    Google Scholar 

  • Kreft, H.E., Austad, H., and Gordon, A.E., 1966, Design and Charac teristics of a 100 Kilovolt Hydrogen Thyratron Tube, Proc. of the 9th Modulator Symposium.:153 (see A.S. Gilmour, 1985).

    Google Scholar 

  • Kunc, J.A., Guha, S., and Gundersen, M.A., 1983, A Fundamental Theory of High Power Thyratrons I: The Electron Temperature, Lasers and Particle Beams. 1:395.

    Article  Google Scholar 

  • Kunc, J.A., Braun, C., Erwin, D., and Gundersen, M.A., 1984, Gas Discharge Device for High-Power High-Repetition Application, IEEE Conference Record of 16th Power Modulator Symposium.:131, IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Kunc, J.A., 1984, Stepwise Ionization in a Non-Equilibrium, Steady-State Hydrogen Plasma, J. Quant. Spectrosc. Radiat. Transfer. 32:311.

    Article  Google Scholar 

  • Langmuir, I., U.S. Patent 1,289,823, Dec. 1918.

    Google Scholar 

  • Lemmens, H.J., Jansen, M.J., and Loosjes, R., 1950, A New Thermionic Cathode for Heavy Loads, Philips Tech. Rev., 11:341.

    Google Scholar 

  • Levy, S., and Creedon, J., 1978, “Solid State Clipper Diodes for High Power Modulators,” IEEE Conference Record of 13th Pulse Power Modulator Symposium.:60, IEEE, New York (see A.S. Gilmour, 1985).

    Google Scholar 

  • Loosjes, R., and Vink, H.J., 1949, The Conduction Mechanism in Oxide-Coated Cathodes, Philips Res. Rep., R124:449.

    Google Scholar 

  • Martin, S.T., and Goldberg, S., 1956, “Research Study Hydrogen Thyratrons-Vol. I,” Edgerton, Germeshausen and Grier, Boston.

    Google Scholar 

  • Menown, H., and Newton, B., 1973, A Multigap Double Ended Hydrogen Thyratron, IEEE Conference Record of the 11th Modulator Symposium.:232, IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Nottingham, W.B. 1965, Thermionic Emission, in “Handbuch der Physik-Vol. 21, S. Fluegge, ed., Springer Verlag, Berlin.

    Google Scholar 

  • Persson, K.B., and Brown, S.C., 1955, Electron Loss Process in the Hydrogen Afterglow, Phys. Rev., 100:729.

    Google Scholar 

  • Phelps, A.V., Fundingsland, O.T. and Brown, S.C., 1951, Phys. Rev. 84:559

    Article  Google Scholar 

  • Scoles. G., 1973, Triggered Charging Techniques for Pulse Generating Circuit, IEEE Conference Record of 11th Modulator Symposium.:162, IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Turnquist, D., Lynch, T., and Merz, S., 1980, Development of Instant-Start Thyratrons, IEEE Conf. Record of 14th Pulse Power Modulator Symposium.:46, IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Varnerin, L.J., and Brown, S.C., 1950, Microwave Determinations of Average Electron Energies and the First Townsend Coefficient in Hydrogen, Phys. Rev., 79:946.

    Article  Google Scholar 

  • Wehnelt, A., 1903, über Kathodenstrahlen an Glühenden Kathoden, Verhandlungen der Deutschen Physikalischen Gesellschaft. 5:255.

    Google Scholar 

  • Wheldon, R.J., and Nicholls, R.S., 1973, The Development of Deuterium Thyratrons for Operation at High Duty-Ratios and High Average Currents, IEEE Conf. Record of Eleventh Modulator Symposium.:239, IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Wright, W.H., Buffa, A.J., and Schneider, S., 1976, A Blumlein Modulator for a Time-Varying Load, IEEE Conf. Record of 12th Modulator Symposium.:163, IEEE, New York (also see A.S. Gilmour, 1985).

    Google Scholar 

  • Yeamans, N.L. Creedon, J.E., and Schneider, S., 1960, Properties of Hydrogen Reservoir Materials, Proc. of the 6th Symposium on Hydrogen Thyratrons and Modulators.:87, (see A.S. Gilmour, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Creedon, J. (1990). Design Principles and Operation Characteristics. In: Schaefer, G., Kristiansen, M., Guenther, A. (eds) Gas Discharge Closing Switches. Advances in Pulsed Power Technology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2130-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2130-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2132-1

  • Online ISBN: 978-1-4899-2130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics