Skip to main content

Repetitive Spark Gap Switches

  • Chapter
Gas Discharge Closing Switches

Part of the book series: Advances in Pulsed Power Technology ((APUT,volume 2))

Abstract

for high peak power pulsed power applications spark gaps are the normal choice for switches. They are triggerable with nanosecond jitter, have a large operating range, and give good time compression per switched stage. In addition they are rugged, light-weight, inexpensive, and relatively easy to use. On the negative side, they suffer from recovery problems at high repetition rates and have some instability (prefiring) problems even in single shot applications. Despite the fact that spark gaps have been used for over a century and many of these properties have been known for years, it has only been in the past few decades that the need for high peak power repetitive pulsed power systems has forced serious efforts to engineer systems compatible with these apparent short comings.

This Chapter was originally intended to include additional sections and to be edited by G. Schaefer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alston, L.L. 1960, “High Voltage Technology”, Oxford Press, New York,:74.

    Google Scholar 

  • Anderson, J.M. and Carroll, J.J., 1978, Applicability; of a Vacuum Interrupter as the Switch Element in HVDC Breakers, IEEE Trans, on Power Apparatus and Systems, PAS-97:1893.

    Article  Google Scholar 

  • Andreev, S.I., Leonov, S.N., and Liukonen, R.A., 1976, Temperature Profile in the Channel of a High-Current Pulsed Discharge in Air, Sov, Phys. Tech. Phys., 21:575.

    Google Scholar 

  • Aretov, G.N., Vasil’ev, V.I., Pergament, M.I., and Tserevitinov, S.S., 1967, Delay Characteristics of Vacuum Disc Switches, Sov. Phys. Tech. Phys., 12:90.

    Google Scholar 

  • Avrutskii, V.A., 1973, Effect of Electrode Roughness of Breakdown Voltage, Sov. Phys. Tech. Phys., 18:389.

    Google Scholar 

  • Avrutskii, V.A., Goncharenko, G.M., and Prokhorov, E.N., 1973, Effect of Electrode Roughness on the Electrical Strength of Compressed Gases, Sov. Phys. Tech. Phys., 18:386.

    Google Scholar 

  • Avrutskii, V.A. and Koshchienko, V.N., 1979, Analysis of the Trump-Van de Graff Condition for Vacuum Breakdown, Sov. Phys. Tech Phys., 24:1062.

    Google Scholar 

  • Baker, W. 1959, High-Voltage, Low-Inductance Switch for Megampere Pulse Currents, Rev. Sci. Inst., 30:700.

    Article  Google Scholar 

  • Bannenberg, J.G. and Insinger, F.G., 1962, Improved Vacuum Switch for Capacitor-Discharge Services, Rev. Sci. Inst., 33:1106.

    Article  Google Scholar 

  • Bougaev, S.P., Kim, A.A., Koshelev, V.I., and Khryapov, P.A., 1982, Breakdown of a Coaxial Diode Transverse to a Uniform Magnetic Field, 10th International Symposium on Discharge and Electrical Insulation in Vacuum. Columbia, SC., October 25-26,:66.

    Google Scholar 

  • Boxman, R.L., 1977, Triggering Mechanisms in Triggered Vacuum Gaps, IEEE Trans. Elect. Dev., ED-24:122.

    Article  Google Scholar 

  • Boxman, R.L., Goldsmith, S., Izraeli, I., and Shalev, S., 1982, A Model of the Multi-Cathode-Spot Vacuum Arc, 10th International Symposium on Discharge and Electrical Insulation in Vacuum, Columbia SC., October 25-26,:161.

    Google Scholar 

  • Bracewell, G.M., Maycock, J., and Blackwell, G.R., 1959, Switching Two Million Amps, Nuclear Power.:115.

    Google Scholar 

  • Bugaev, S.P., Iskol’dskii, A.M., Mesyats, G.A., and Proskurovskii, D.I. 1968, Electron-Optical Observation of Initiation and Development of Pulsed Breakdown in a Narrow Vacuum Gap, Sov. Phys.-Tech. Phys., 12:1625.

    Google Scholar 

  • Bugaev, S.P., Mesyats, G.A. and Proskurovskii, D.I., 1969, Cathode and Anode Flares During an Impulsive Vacuum Discharge in the Nanosecond Range, Sov. Phys.-Tech. Phys., 14:605.

    Google Scholar 

  • Buttram, M., 1981, Development of a 50 Hz, 250 kV, 500 ns, 500 kW Average Power Puiser, Sandia Report SAND81-2229.

    Google Scholar 

  • Buttram, M., 1983, An Alternative to Gas Purging in Pulse Charged Repetitive Spark Gaps, Proc. 4th IEEE Int’l. Pulsed Power Conference. Albuquerque, NM:163.

    Google Scholar 

  • Chalmers, I.D. and Phukan, B.D., 1979, Photographic Observations of Impulse Breakdown in Short Vacuum Gaps, J. Physics D. Applied Physics. 12:1285.

    Article  Google Scholar 

  • Churchill, R.J., Parker, A.B., and Craggs, J.D., 1961, Measurement of Reignition Voltage Characteristics for High Current Spark Gaps in Air, Journal of Electronics and Control. 11:17.

    Article  Google Scholar 

  • Cobine, J.D. and Farrall, G.A., 1963, Recovery Characteristics of Vacuum Arcs, IEEE Trans, on Communications and Electronics. 82:246.

    Google Scholar 

  • Cormack, G.D. and Barnard, A.J., 1962, Low Inductance Low Pressure Spark Gap Switch, Rev. Sci. Inst., 33:606.

    Article  Google Scholar 

  • Crawford, F.W., and H. Edels, 1960, IEEE Transactions. 107:202.

    Google Scholar 

  • Cross, J.D., Mazurek, B., and Srivastava, K.O., 1982, Photographic Observations of Breakdown Mechanism in Vacuum, 10th International Symposium on Discharge and Electrical Insulation in Vacuum. Columbia, SC., October 25-26,:58.

    Google Scholar 

  • Dashuk, P.N., Kichaeva, G.S., and Yarysheva, M.D., 1963, Controlled Discharge in a Vacuum Gap Switched by 1 Mc Current Pulses of up to 150 kA, Soviet Physics Journal, 11:4.

    Google Scholar 

  • Dashuk, P.N., Kichaeva, G.S. and Shkuropat, P.I., 1984, Characteristics of a Pulse Discharge Initiated by a Triggering Spark Over a Dielectric Surface in Vacuum, Proc. XIth Int. Symp. Discharges and Electrical Insulation in Vacuum.:313.

    Google Scholar 

  • Davies, D.K. and Biondi, M.A., 1968, The Effect of Electrode Temperature on Vacuum Electrical Breakdown Between Plane-Parallel Copper Electrodes, Appl. Phys., 39:2979.

    Article  Google Scholar 

  • Davies, D.K. and Biondi, M.A., 1971, Mechanism of dc Electrical Breakdown between Extended Electrodes in Vacuum, Appl. Phys., 42:3089.

    Google Scholar 

  • Davies, D.K., and Biondi, M.A., 1977, Emission of Electrode Vapor Resonance Radiation at the Onset of dc Breakdown in Vacuum, Appl. Phys., 48:4229.

    Article  Google Scholar 

  • Davies, D.K. and Biondi, M.A., 1970, Detection of Electrode Vapor Between Plane Parallel Copper Electrodes Prior to Current Amplification and Breakdown in Vacuum, Appl. Phys., 41:88.

    Google Scholar 

  • Dougal, R.A. and Volakakis, G.D., 1988, An Enhanced Vacuum Switch, Proc. XVIII Power Modulator Symposium.:133.

    Google Scholar 

  • Dunkerley, H.S., 1965, Plasma-Injection Vacuum Energy Diverter (Crowbar), Report 4 on Contract DA-28-043 AMC-00330 (E), U.S. Army Electronics Laboratories, Fort Monmouth, NJ, by General Electric Tube Company, Schenectady, NY.

    Google Scholar 

  • Eastham, D.A., and Chatterton, P.A., 1982, An Investigation of Microparticle Induced Breakdown Using a Twin Beam Laser Scattering System, 10th International Symposium on Discharge and Electrical Insulation in Vacuum. Columbia, SC., October 25-26:17.

    Google Scholar 

  • Edels, H., Whittaker, D., Evans, K.G., and Shaw, A.B., 1965, Experiments and Theory on Arc Reignition by Spark Breakdown, Proc. IEE. 112:104.

    Google Scholar 

  • Faltens, A., Reginato, L.L., Hester, R., Chesterman, A., Cook, E.G., Yokota, T., and Dexter, W., 1981, Proc. 3rd IEEE Int’l. Pulsed Power Conf., Albuquerque, NM.

    Google Scholar 

  • Farrall, G.A., 1966, Low Voltage Firing Characteristics of a Triggered Vacuum Gap, IEEE Trans. Elect. Dev., ED-13:432.

    Article  Google Scholar 

  • Farrall, G.A. and Cobine, J.D., 1967, Recovery Strength Measurements in Arcs from Atmospheric Pressure to Vacuum, IEEE Trans. on Power Apparatus and Systems. PAS-86:927.

    Article  Google Scholar 

  • Farrall, G.A., 1973, Vacuum Arcs and Switching, Proc. IEEE. 61:1113.

    Article  Google Scholar 

  • Frind, G., Carroll, J.J., and Tuohy, E.J., 1982, Recovery Times of Vacuum Interrupters Which Have Stationary Anode Spots, IEEE Trans, on Power Apparatus and Systems, PAS-101:775.

    Article  Google Scholar 

  • Früngel, F.B.A., 1965, High Speed Pulse Technology, Vol I Capacitor Discharges-Magnetohydrodynamics-X-rays-Ultrasonics (or Vol. II: Optical Pulses-Lasers — Measuring Techniques, Academic Press, New York.

    Google Scholar 

  • Gilmour, A.S., 1976, The Present Status and Projected Capabilities of Vacuum Arc Opening Switches, Proc. IEEE International Pulsed Power Conference,:IC1-1.

    Google Scholar 

  • Gorman, J.G., Kimblin, C.W., Voshall, R.E., Wien, R.E., and Slade, P.G., 1983, The Interaction of Vacuum Arcs with Magnetic Fields and Applications, IEEE Trans, on Power Apparatus and Systems. PAS-102:346.

    Article  Google Scholar 

  • Goryunov, B.A., 1975, Dielectrics Strength of Compressed Sulfur Hexafluoride and the Electrode Material and Surface Structure, Sov. Phys. Tech. Phys., 20:66.

    Google Scholar 

  • Govinda Raju, G.R., Hackam, R., and Benson, F.A., 1976, Breakdown Mechanisms and Electrical Properties of Triggered Vacuum Gaps, J. Appl. Phys., 47:1310.

    Article  Google Scholar 

  • Green, A.J. and Christopoulos, C., 1979, Plasma Buildup and Breakdown Delay in Triggered Vacuum Gap, IEEE Trans. Plasma Science, PS-7:111.

    Article  Google Scholar 

  • Hagerman, D.C. and Williams, A.H., 1959, High-Power Vacuum Spark Gap, Rev. Sci. Inst., 30:182.

    Article  Google Scholar 

  • Hagler, M., 1983, Texas Tech University, private communication.

    Google Scholar 

  • Honig, E.M., Swannack, C.E., Warren, R.W., and Whitaker, D.H., 1977, Progress in Switching Technology for METS Systems, IEEE Trans, on Plasma Science. PS-5:61.

    Article  Google Scholar 

  • Honig, E.M., 1985, Repetitive Energy Transfers from an Inductive Energy Store, Los Alamos National Laboratory Report LA-10238-T. Thesis UC-38.

    Google Scholar 

  • Hull, A.W. and Snoddy, L.B., 1937, Electrical Discharge Devices, U.S. Patent 2,089,555, August 10.

    Google Scholar 

  • Johansson, R.B., and Smȧrs, E.A., 1961, A Low-Pressure Spark-Gap Switch with Wide Voltage Range, Proc. of the 5th Int. Conf. on Ionization Phenomena in Gases. Stockholm, Sweden,:1040.

    Google Scholar 

  • Johnson, D.L., VanDevender, J.P., and Martin, T.H., 1983, Preliminary PBFA II Design, Proc. IEEE 14th Pulse Poweer Modulator Symp., Orlando, FL:305.

    Google Scholar 

  • Kamakshaiah, S., and Rau, R.S.N., 1977, Low Voltage Firing Characteristics of a Simple Triggered Vacuum Gap, IEEE Trans. Plasma Science. PS-5:164.

    Article  Google Scholar 

  • Kamakshaiah, S., and Rau, R.S.N., 1977, Anode Phenomena in Trigger ed Vacuum Gaps, IEEE Trans. Plasma Sciences. PS-5:1.

    Article  Google Scholar 

  • Kassirov, G.M. and Sekisov, F.G., 1983, Pulsed Breakdown Phenomena in Centimeter Vacuum Gaps, Sov. Phys.-Tech. Phys., 28:783.

    Google Scholar 

  • Khalifa, M., 1956, Properties of Vacuum as a Switching Ambient, Canadian Journal of Technology. 34:304.

    Google Scholar 

  • Kichaeva, G.S. and Shkuropat, P.I., 1984, Investigation on Processes of Initiation of a Discharge by Triggering Spark in a Heavy-Current Vacuum Switch, Proc. XIth Int. Symp. Discharges and Electrical Insulation in Vacuum.:317.

    Google Scholar 

  • Kimblin, C.W., 1971, Dielectric Recovery and Shield-Currents in Vacuum-Arc Interrupters, IEEE Trans. on Power Apparatus and Systems. PAS-90:1261.

    Article  Google Scholar 

  • Kimblin, C.W., Slade, P.G., Gorman, J.G., and Voshall, R.E., 1981, Vacuum Interrupters Applied to Pulse Power Switching, 3rd IEEE Intl. Pulsed Power Conf., Albuquerque, NM,:440.

    Google Scholar 

  • Koller, R., 1946, Fundamental Properties of the Vacuum Switch, Trans. Electrical Engineering. 65:597.

    Article  Google Scholar 

  • Lafferty, J.M., 1966, Triggered Vacuum Gaps, Proc. IEEE. 54:23.

    Article  Google Scholar 

  • Lafferty, J.M., 1980, “Vacuum Arcs Theory and Applications”, Wiley, New York,:20.

    Google Scholar 

  • Lauer, E.J. and Birx, D.L., 1981, Low Pressure Spark Gap, Proc. 3rd IEEE Intl. Pulsed Power Conf., Albuquerque, NM:380.

    Google Scholar 

  • Lauer, E.J. and Birx, D.L., 1982, Tests of a Low-Pressure Switch Protected by a Saturating Inductor, Record of 15th Power Modulator Symposium. Baltimore, MD:47.

    Google Scholar 

  • Lauer, E.J., Yu, S.S., and Cox, D.M., 1980, Onset of Selfbreakdown in a Low Pressure Spark Gap, Lawrence Livermore National Laboratory. UCRL-84216.

    Google Scholar 

  • Limpacher, R. and Schneider, R., 1982, High Power Spark Gap Text Results, Proc. 15th Power Modulator Symposium. Baltimore, MD,:75.

    Google Scholar 

  • Lyubimov, G.A. and Rakhovskii, V.I., 1978, The Cathode Spot of a Vacuum Arc, Sov. Phys., 21:693.

    Article  Google Scholar 

  • Martin, J.C., 1965, Duration of the Resistive Phase and Inductance of Spark Channels, AWRE Report SSWA/JCM/1065/25.

    Google Scholar 

  • Martin, T.H., 1983, Sandia National Laboratories, private communication.

    Google Scholar 

  • Mather, J.W., and Williams, A.H., 1960, Some Properties of a Graded Vacuum Spark Gap, Rev. Sci. Inst., 31:297.

    Article  Google Scholar 

  • McCann, G.D., and Clark, J.J., 1943, Dielectric-Recovery Characteristics of Large Air Gaps, AIEE Transactions. 62:45.

    Google Scholar 

  • McDonald, C.L., Dougal, R.A., Sudarshan, T.S., and Thompson, J.E., 1984, Voltage Recovery Time of a Vacuum Switch, IEEE Conf. Record of 1984 16th Power Modulator Svmp.,:91.

    Google Scholar 

  • Meek, J.M., and Craggs, J.D., eds., 1978, “Electrical Breakdown of Gases, Wiley-Interscience Publication, New York,:129, 140.

    Google Scholar 

  • Mesyats, G.A., 1982, Fast Processes on the Cathode in a Vacuum Discharge, Proc. 10th Int’l. Symp. on Discharge and Electrical Insulation in Vacuum. Columbia, SC., Oct. 25-28,:37.

    Google Scholar 

  • Mercer, S., Smith, I., and Martin, T., 1974, A Compact, 3 MV Gas Switch, Proc. of Int’l. Conf. on Energy Storage. Compression and Switching. Asti, Italy,:459.

    Google Scholar 

  • Michaelson, A. and Price, H.N., 1968, Triggered Vacuum Gaps as Energy Diverters in Electronic Equipment, Proc. 10th Modulator Symp., New York, NY,:235.

    Google Scholar 

  • Miller, H.C., 1983, Vacuum Arc Anode Phenomena, IEEE Trans, on Plasma Science. PS-11:76

    Article  Google Scholar 

  • Naff, J.T., Sojka, R.J., and Zeehandelaar, E.P., 1980, Design and Performance of a High Repetition Rate Spark Gap Switch at 50 kW power Levels, Proc. 14th Power Modulator Symposium, Orlando, FL,:21.

    Google Scholar 

  • Nagabhushana, G.R., Jaitly, N.C., and Narayana, K.A., 1982, Breakdown of Unbridged Vacuum Gaps Under Impulse Voltages, 10th Int’l. Symp. on Discharge and Electrical Insulation in Vacuum. Columbia, SC., Oct. 25-26.

    Google Scholar 

  • Nikitinsky, V.A., Zhuravlyov, B.I., Lozovoy, B.S., Gaponenko, A.T., and Starobin, B.Ya., 1982, Two Breakdown Voltages of the Low Pressure Gas Gap, 10th Int’l. Symp. on Discharge and Electrical Insulation in Vacuum. Columbia, SC., Oct. 25-26.

    Google Scholar 

  • Nitta, T., Yamada, N., and Fujiwara, Y., 1973, IEEE PES Summer Meeting, Vancouver, B.C., Canada, paper T73949-6,:623.

    Google Scholar 

  • Ornstein, L.Th.M., Hugenholtz, C.A.J, and van der Laan, H.A., 1965, A Triggered Vacuum Spark-gap Switch, J. Sci. Inst. 42:659.

    Article  Google Scholar 

  • Poole, D.E., Parker, A.B., and Churchill, R.J., 1963, Measurement of the Temperature Decay of High Current Spark Channels in Air, Journal of Electronics and Control. 15:131.

    Article  Google Scholar 

  • Price, H.N., 1966, Development of High Voltage High Current Switches, Final Report on Contract NAS8-20526, NASA, by General Electric Tube Department, Schenectady, NY.

    Google Scholar 

  • Price, H.N., 1966, Triggered Vacuum Gaps, 9th Modulator Symposium. Ft. Monmouth, NJ,:122.

    Google Scholar 

  • Puchkarev, V.F. and Shkuratov, 1982, Influence of Superconductivity on a Vacuum-Breakdown Delay Time, 10th Int’l. Symp. on Discharge and Electrical Insulation in Vacuum. Columbia, SC., Oct. 25-26.

    Google Scholar 

  • Raju, G.R.G., Hackam, R., and Benson, F.A., 1976, Breakdown Mechanisms and Electrical Properties of Triggered Vacuum Gaps, J. Appl. Phys., 47:1310.

    Article  Google Scholar 

  • Raju, G.R.G., Hackam, R., and Benson, F.A., 1977, Firing Character-sties of a Triggered Vacuum Gap Employing a Dielectric Coated with a Semiconducting Layer, J. Appl. Phys., 48:1101.

    Article  Google Scholar 

  • Ramrus, A., 1979, Development of a 100-kV Multimegawatt Repetition Rate Gas Switch, IEEE Trans, on Elect. Dev., ED-26:1417.

    Article  Google Scholar 

  • Reece, M., 1963, The Vacuum Switch, Part 1 Properties of the Vacuum Arc, Proc. IEE. 10:793.

    Google Scholar 

  • Rich, J.A. and Farrall, G.A., 1964, Vacuum Arc Recovery Phenomena, Proc. IEEE. 52:1293.

    Article  Google Scholar 

  • Rich, J.A., Farrall, G.A., Imam, I., and Sofianek, J.C., 1981a, Development of a High-Power Vacuum Interrupter, Final Report for the Electric Power Research Institute. EL-1895. Research Project 754-1. General Electric Company.

    Google Scholar 

  • Rich, J.A., Goody, C.P., and Sofianek, J.C., 1981b, High Power Triggered Vacuum Gap of the Rod Array Type, General Electric Company Report No. BICRC321.

    Google Scholar 

  • Riepe, K., 1981, Antares Prototype 300 kJ, 250 kV Marx Generator, Los Alamos National Laboratory Report LA-8491.

    Google Scholar 

  • Rinehart, L.F., and Buttram, M.T., 1984, Self-Breakdown Spark Gap Stability Under Rep-Rate Conditions, IEEE Conf. Record of the 16th Power Modulator Symposium.:40.

    Google Scholar 

  • Rinehart, L.F. and Buttram, M.T., 1985, Statistical Distribution of Breakdown Voltages in Rep-Rate Spark Gaps, Proc. 5th IEEE Pulsed Power Conf., Arlington, VA,:453.

    Google Scholar 

  • Rohwein, G.J., 1980, A Low Jitter Spark Gap Switch for Repetitively Pulsed Parallel Capacitor Banks, IEEE Conf. Record of the 14th Pulse Power Modulator Symp., Orlando, FL,:1.

    Google Scholar 

  • Sampayan, S.E., Gurbaxani, S., and Buttram, M.T., 1989, Recovery Properties of Vacuum Spark Gaps, IEEE Trans, on Plasma Science, PS-17:889.

    Article  Google Scholar 

  • Sampayan, S.E., 1990, The Closure and Recovery Properties of Triggered Vacuum Spark Gaps, Ph.D. Dissertation, University of New Mexico.

    Google Scholar 

  • Schneider, S., 1969, Multiple-Electrode Triggered Vacuum Gaps, IEEE Trans. Electronic Devices. ED-16:291.

    Google Scholar 

  • Shefer, R.E., Friedland, L., and Klinkowstein, R.E., 1988, Evolution of High Current, Cold Cathode Diodes to Steady State, Phys. Fluids. 31:930.

    Article  Google Scholar 

  • Smith, I, Lauer, G., and Levine, M., 1982, Tests of a Dielectric-Vacuum Surface Flashover Switch, Proc. 15th Power Modulator Symp.,:160.

    Google Scholar 

  • Thompson, J.E., Fellers, R.G., Sudarshan, T.S., and Warren, F.T., 1980, Design of a Triggered Vacuum Gap for Crowbar Operation, Proc. 14th Pulse Power Modulator Svmp.,:85.

    Google Scholar 

  • Thompson, J.E., Warren, F.T., and Wilson, J.M., 1981, High Power Vacuum Switch Development for Crowbar Applications, Final Report for Los Alamos National Laboratory. Contract N28-5815H-1, University of South Carolina.

    Google Scholar 

  • Tucker, W.K., 1982, Sandia Report SAND82-1183.

    Google Scholar 

  • Volakakis, G.D. and Dougal, R.A., 1989, 10 kHz Operation of the Magnetically Delayed Vacuum Switch, Proc. of the 7th IEEE Pulsed Power Conf., Monterey, C.A.

    Google Scholar 

  • Voshall, R.E., 1984, Westinghouse Research and Development Center, Pittsburgh, PA, private communication.

    Google Scholar 

  • Voshall, R.E., Gorman, J.G., Lee, A., and Kimblin, C.W., 1984, Investigation of Vacuum Triggered Spark Gap Switches for Pulse Power Systems, Westinghouse Research and Development Center Report No. 84-9C7-TVGAP-R1.

    Google Scholar 

  • Voshall, R.E., Bhasavanich, D., Gorman, J.G., and Buttram, M.T., 1985, Delay Times and Jitter in Triggered Vacuum Spark Gaps Using Metal Vapor and Surface Flashover Type Triggers, Proc. 5th IEEE Pulsed Power Conf.,:272.

    Google Scholar 

  • Ware, K.D., Mather, J.W., Williams, A.H., Bottoms, P.J., and Carpenter, J.P., 1971, Design and Operation of a Fast High-Voltage Vacuum Switch, Rev. Sci. Instr., 42:512.

    Article  Google Scholar 

  • Warren, F.T., Wilson, J.M., Thompson, J.E., Boxman, R.L., and Sudarshan, T.S., 1982, Vacuum Switch Trigger Delay Characteristics, IEEE Trans, on Plasma Science. PS-10:298.

    Article  Google Scholar 

  • Wilson, J.M., 1981, Breakdown Characteristics of a Triggered Vacuum and Low-Pressure Switch, Master’s Thesis, U. of South Carolina.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buttram, M.T., Sampayan, S. (1990). Repetitive Spark Gap Switches. In: Schaefer, G., Kristiansen, M., Guenther, A. (eds) Gas Discharge Closing Switches. Advances in Pulsed Power Technology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2130-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2130-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2132-1

  • Online ISBN: 978-1-4899-2130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics