Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 168))

Abstract

Until recently organic conductors were so scarce that recipes for their synthesis were deemed necessary. Now these recipes seem quaint as organic and polymeric conductors multiply.1 Segregated, rather than mixed, stacking of π-molecular donors (D) and acceptors (A) is indeed required. But conducting polymers show crystallinity not to be essential, while excellent D2X conductors and superconductors have neither crystallographically equivalent sites nor strictly equal transfer integrals t. The physical idea of facile charge fluctuations among nearly equivalent, partly-filled sites supercedes any mathematical statement of equality. Polarizable counter ions, disorder, dimensionality, overlap patterns, etc. have all provided useful but limited insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of the International Conference on Science and Technology of Synthetic Metals, Kyoto, Japan (1986), Synth. Metals, 17-19 (1987).

    Google Scholar 

  2. Z. G. Soos, Ann. Rev. Phys. Chem. 25:121 (1974).

    Article  ADS  Google Scholar 

  3. Z. G. Soos, Israel J. Chem. 23:37 (1983).

    Article  Google Scholar 

  4. Z. G. Soos and D. J. Klein, Charge-Transfer in Solid State Complexes, in Molecular Association, Vol. 1, R. Foster, ed., Academic Press, New York (1975) and references therein.

    Google Scholar 

  5. J. B. Torrance, Acc. Chem. Res. 12: 79 (1979).

    Article  Google Scholar 

  6. N. F. Mott, Proc. R. Soc. 62:416 (1949).

    Google Scholar 

  7. N. F. Mott, Rev. Mod. Phys. 40:677 (1968).

    Article  ADS  Google Scholar 

  8. N. F. Mott, Metal-Insulator Transitions, Taylor and Francis, London (1974).

    Google Scholar 

  9. J. B. Torrance, J. J. Mayerle, K. Bechgaard, B. D. Silverman and Y. Tomkiewicz, Phys. Rev. B23:4960 (1980).

    Article  ADS  Google Scholar 

  10. R. S. Mulliken, J. Amer. Chem. Soc. 74:811 (1952).

    Article  Google Scholar 

  11. R. S. Mulliken, J. Phys. Chem. 56:801 (1954).

    Article  Google Scholar 

  12. R. S. Mulliken and W. B. Person, Molecular Complexes: A Lecture and Reprint Volume, Wiley, New York (1969).

    Google Scholar 

  13. Z. G. Soos and S. Ramasesha, Phys. Rev. B29:5410 (1984).

    Article  ADS  Google Scholar 

  14. E. H. Lieb and D. C. Mattis, Phys. Rev. 125:164 (1962). Appendix.

    Article  ADS  Google Scholar 

  15. P. L. Nordio, Z. G. Soos, and H. M. McConnell, Ann. Rev. Phys. Chem. 17:237 (1966).

    Article  ADS  Google Scholar 

  16. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20:1445 (1968).

    Article  ADS  Google Scholar 

  17. G. V. Uimin and S. V. Fomichev, Soviet Phys. JETP 36:1001 (1973).

    ADS  Google Scholar 

  18. A. A. Ovchinnikov, I. I. Ukranskii, and G. V. Kventsel, Soviet Phys. Uspekhi 15:575 (1973).

    Article  ADS  Google Scholar 

  19. L. Salem, The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1964) and references therein.

    Google Scholar 

  20. K. Ohno, Theor. Chim. Acta. 2:219 (1964)

    Article  Google Scholar 

  21. M. Sasai and H. Fukutome, Prog. Theor. Phys. 70:1471 (1983); 69:373 (1983).

    Article  ADS  Google Scholar 

  22. S. Ramasesha and Z. G. Soos, Phys. Rev. B32:5368 (1985).

    Article  ADS  Google Scholar 

  23. K. L. D’Amico, C. Manos, and R. L. Christensen, J. Amer. Chem. Soc. 102:1777 (1980).

    Article  Google Scholar 

  24. A. H. Zimmerman, R. Gygax, and J. I. Brauman, J. Amer. Chem. Soc. 100:5595 (1978).

    Article  Google Scholar 

  25. T. S. Sorenson, J. Amer. Chem. Soc. 87:5075 (1965).

    Article  Google Scholar 

  26. S. Malhorta and M. Whiting, J. Chem. Soc. 1960:3812 (1960).

    Google Scholar 

  27. Z. G. Soos and S. Ramasesha, Phys. Rev. Lett. 51:2374 (1983).

    Article  ADS  Google Scholar 

  28. Y. Iida, Bull. Chem. Soc. Japan 42:637 (1969).

    Article  Google Scholar 

  29. J. B. Torrance, B. A. Scott, B. Weiber, F. B. Kaufman, and P. E. Seiden, Phys. Rev. B19:730 (1979).

    Article  ADS  Google Scholar 

  30. S. Mazumdar and Z. G. Soos, Phys. Rev. B23:2810 (1981).

    Article  ADS  Google Scholar 

  31. J. Tanaka, M. Tanaka, T. Kawai, T. Takabe, and O. Maki, Bull. Chem. Soc. Japan 49:2358 (1976).

    Article  Google Scholar 

  32. C. Tanaka, J. Tanaka, K. Dietz, C. Katayama, and M. Tanaka, Bull. Chem. Soc. Japan 56:405 (1983).

    Article  Google Scholar 

  33. K. Yakushi, M. Iguchi, G. Katagiri, T. Kusaka, T. Ohta, and H. Kuroda, Bull. Chem. Soc. Japan 54:348 (1981).

    Article  Google Scholar 

  34. T. Sugano, K. Yakushi, and H. Kuroda, Bull. Chem. Soc. Japan 51:1041 (1978).

    Article  Google Scholar 

  35. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 44:1698 (1979).

    Article  ADS  Google Scholar 

  36. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B22:2099 (1980).

    Article  ADS  Google Scholar 

  37. Z. G. Soos and L. R. Ducasse, J. Chem. Phys. 78:4092 (1983).

    Article  ADS  Google Scholar 

  38. B. S. Hudson, B. E. Kohler, and K. Schulten, Excited States 6:1 (1982) and references therein.

    Article  Google Scholar 

  39. J. Orenstein and G. L. Baker, Phys. Rev. Lett. 49:1042 (1982).

    Article  ADS  Google Scholar 

  40. C. V. Shank, R. Yen, R. L. Fork, J. Orenstein, and G. L. Baker, Phys. Rev. Lett. 49:2660 (1982); see also réf. 1.

    Article  ADS  Google Scholar 

  41. C. S. Jacobsen and J. B. Torrance, J. Chem. Phys. 78:112 (1983).

    Article  ADS  Google Scholar 

  42. A. Girlando, R. Bozio, C. Pecile, and J. B. Torrance, Phys Rev. B26:2306 (1982).

    Article  ADS  Google Scholar 

  43. Y. Tokura, Y. Kaneko, H. Okamoto, S. Tanuma, T. Koda, T. Mitani, and G. Saito, Mol. Cryst. Liq. Cryst. 125:71 (1985) and references therein.

    Article  Google Scholar 

  44. Y. Tokura, T. Koda, G. Saito, and T. Mitani, J. Phys. Soc. Japan 53:4445 (1984).

    Article  ADS  Google Scholar 

  45. S. Kagoshima, Y. Kanai, M. Tani, Y. Tokura, and T. Koda, Mol. Cryst. Liq. Cryst. 120:9 (1985).

    Article  Google Scholar 

  46. Y. Kaneko, T. Mitani, S. Tanuma, Y. Tokura, T. Koda, and G. Saito, Phys. Rev. B (in press). N. Nagaosa and J. Takimoto, Synth. Met. 19:497 (1987).

    Article  Google Scholar 

  47. Z. G. Soos, H. J. Keller, K. Ludolf, J. Queckbörner, D. Wehe, and S. Flandrois, J. Chem. Phys. 74:5287 (1981)

    Article  ADS  Google Scholar 

  48. Z. G. Soos, S. Kuwajima, and R. H. Harding, J. Chem. Phys. 85:601 (1986).

    Article  ADS  Google Scholar 

  49. R. M. Metzger and J. B. Torrance, J. Am. Chem. Soc. 107:117 (1985).

    Article  Google Scholar 

  50. T. Mitani, G. Saito, Y. Tokura, and T. Koda, Phys. Rev. Lett 53:842 (1984).

    Article  ADS  Google Scholar 

  51. D. Nöthe, W. Moroni, H. J. Keller, and Z. G. Soos, Solid State Commun. 26:713 (1978).

    Article  ADS  Google Scholar 

  52. B. Horowitz and J. Solyom, Phys. Rev. B35:7081 (1987).

    Article  ADS  Google Scholar 

  53. A. Girlando and A. Painelli, Phys. Rev. B34:2131 (1986) and private communication.

    Article  ADS  Google Scholar 

  54. Z. G. Soos, S. R. Bondeson, and S. Mazumdar, Chem. Phys. Letters 65:331 (1979).

    Article  ADS  Google Scholar 

  55. H. C. Longuet-Higgins and L. Salem, Proc. Roy. Soc. London, Ser. A 251:172 (1959).

    Article  ADS  Google Scholar 

  56. E. J. Mele, Phonons and the Peierls Instability in Polyacetylene, in Handbook of Conducting Polymers, Vol. 2, T. A. Skotheim, ed., Marcel Dekker, New York (1986) and references therein.

    Google Scholar 

  57. M. J. Rice, N. O. Lipari, and S. Strässler, Phys. Rev. Lett. 21:1359 (1977).

    Article  ADS  Google Scholar 

  58. M. J. Rice, L. Pietronero, and P. Brüesch, Solid State Commun. 21:757 (1977).

    Article  ADS  Google Scholar 

  59. A. Ozkabak, L. Goodman, S. Thakur, and K. Krogh-Jespersen, J. Chem. Phys. 83:6047 (1985).

    Article  ADS  Google Scholar 

  60. R. Bozio and C. Pecile, Molecular Vibration Studies of Quasi-One-Dimensional Organic Charge-Transfer Compounds, in the Physics and Chemistry of Low-Dimensional Solids, NATO ASI Series C56, L. Alcacer, ed., D. Reidel, Dordrecht, The Netherlands (1980).

    Google Scholar 

  61. A. Girlando, A Painelli, and C. Pecile, Mol. Cryst. Liq. Cryst. 120:17 (1985).

    Article  Google Scholar 

  62. M. Meneghetti, R. Bozio, and C. Pecile, Synth. Met. 19:451 (1987).

    Article  Google Scholar 

  63. R. Bozio, M. Meneghetti, C. Pecile, and F. Moran, Synth. Met. 19:309 (1987).

    Article  Google Scholar 

  64. B. Horowitz, Z. Vardeny, and O. Brafman, Synth. Met. 9:215 (1984).

    Article  Google Scholar 

  65. E. Ehrenfreund, Z. Vardeny, O. Brafman, B. Horowitz, H. Fujimoto, J. Tanaka, and M. Tanaka, Synth. Met. 17:263 (1987).

    Article  Google Scholar 

  66. E. Ehrenfreund, Z. Vardeny, O. Brafman, and B. Horowitz, Mol. Cryst. Liq. Cryst. 117:367 (1985).

    Article  Google Scholar 

  67. D. N. Batchelder, The Study of Electronic Excitations of Polydiacetylenes by Optical and Resonance Raman Spectroscopy, in Polydiatetylenes, D. Bloor and R. R. Chance, eds. NATO ASI Series E102, Martinus Nijhoff, Dordrecht, The Netherlands (1985) and references therein.

    Google Scholar 

  68. H. Kuzmany, Pure and App. Chem. 57:235 (1985).

    Article  Google Scholar 

  69. G. Brivio and E. Mulazzi, Phys. Rev. B30:876 (1984).

    Article  ADS  Google Scholar 

  70. Z. G. Soos, N. A. Fisher, and G. W. Hayden, unpublished.

    Google Scholar 

  71. U. Dinur and M. Karplus, Chem. Phys. Lett. 88:171(1982).

    Article  ADS  Google Scholar 

  72. Z. G. Soos, S. Mazumdar, and S. Kuwajima, Extended PPP Models for Polydiacetylene Excitations, in Crystallographically Ordered Polymers, D. J. Sandman, ed., ACS Symp. Ser. 337, (1987).

    Google Scholar 

  73. Z. G. Soos, S. Mazumdar, and S. Kuwajima, Physica 143B:538 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soos, Z.G. (1987). Electronic Structure of Linear Charge Transfer Solids. In: Delhaes, P., Drillon, M. (eds) Organic and Inorganic Low-Dimensional Crystalline Materials. NATO ASI Series, vol 168. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-2091-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2091-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-2093-5

  • Online ISBN: 978-1-4899-2091-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics