Skip to main content

Langmuir-Blodgett Films of Donor-Sigma-Acceptor Molecules and Prospects for Organic Rectifiers

  • Chapter
Organic and Inorganic Low-Dimensional Crystalline Materials

Part of the book series: NATO ASI Series ((NSSB,volume 168))

Abstract

Our goal is to assemble and test a unimolecular rectifier of electrical current, which could be part of a very thin (5 nm thick) electronic device. This idea, originated by Aviram in 1973, depends on the asymmetry of molecules D-σ-A, where D is a good one-electron donor (but poor acceptor), A is a good one-electron acceptor (but poor donor), and σ is a covalent bridge that keeps the molecular orbitals of D separate from those of A. We have found five molecules which self-assemble as monolayers; three contain the TCNQ moiety; three contain “greasy” dodecyl groups on the donor end (which helps in monolayer formation), but one contains only hexyl groups. All of them can be transferred to a glass or Al substrate as Langmuir-Blodgett films. Recent FTIR data for a single monolayer are presented.

Supported in part by NSF-DMR Grant 84-17563

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aviram, M. J. Freiser, P. E. Seiden, and W. R. Young, U.S.Patent US-3,953,874 (27 April 1976).

    Google Scholar 

  2. A. Aviram and M. A. Ratner, Chem. Phvs. Lett. 29. 277–283 (1974).

    Article  ADS  Google Scholar 

  3. A. Aviram, P. E. Seiden, and M. A. Ratner, in “Molecular Electronic Devices”, F. L. Carter, ed. (Dekker, New York, 1982) page 5.

    Google Scholar 

  4. R. M. Metzger and C. A. Panetta, J. Phys. (Les Ulis. Fr.) Colloque 44. C3–1605 to C3-1611 (1983).

    Google Scholar 

  5. R. M. Metzger and C. A. Panetta, in “Molecular Electronic Devices, Vol. II”, F. L. Carter, ed. (Dekker, New York, 1987) page 1.

    Google Scholar 

  6. C. A. Panetta, J. Baghdadchi, and R. M. Metzger, Mol. Cry st. Liq. Cryst. 107. 103–113 (1984).

    Article  Google Scholar 

  7. R. M. Metzger, C. A. Panetta, N. E. Heimer, A. M. Bhatti, E. Torres, G. F. Blackburn, S. K. Tripathy, and L. A. Samuelson, J. Molec. Electronics. 2. 119–124 (1986).

    Google Scholar 

  8. R. M. Metzger, C. A. Panetta, Y. Miura, and E. Torres, Svnth. Metals 18. 797–802 (1987).

    Article  Google Scholar 

  9. E. Torres, C. A. Panetta, and R. M. Metzger, J. Org. Chem. 52, 2944–2945 (1987).

    Article  Google Scholar 

  10. R. M. Metzger and C. A. Panetta, Proc. of the Eighth Winter Conference on Low-Temperature Physics. Cuernavaca. Mexico. January 1987. in press.

    Google Scholar 

  11. R. K. Laidlaw, Y. Miura, C. A. Panetta, and R. M. Metzger, Acta Cryst.. submitted.

    Google Scholar 

  12. R. K. Laidlaw, Y. Miura, J. L. Grant, L. Cooray, M. Clark, L. D. Kispert, and R. M. Metzger, J. Chem. Phys. in press.

    Google Scholar 

  13. R. K. Laidlaw, J. Baghdadchi, C. A. Panetta, Y. Miura, E. Torres, and R. M. Metzger, Acta Cryst., submitted.

    Google Scholar 

  14. Y. Miura, R. K. Laidlaw, C. A. Panetta, and R. M. Metzger, Acta Cryst.. submitted.

    Google Scholar 

  15. R. M. Metzger, R. K. Laidlaw, E. Torres, and C. A. Panetta, J. Cryst.Spectr.Res., submitted.

    Google Scholar 

  16. R. M. Metzger, R. R. Schumaker, M. P. Cava, R. K. Laidlaw, C. A. Panetta, and E.Torres, Langmuir, in press.

    Google Scholar 

  17. R. Hoffman, Acc. Chem. Res. 4. 1–9 (1971).

    Article  Google Scholar 

  18. R. Gleiter, E. Schmidt, D. O. Cowan, and J. P. Ferraris, J. Electron Spectrosc. 2. 207–210 (1973).

    Article  Google Scholar 

  19. R. N. Compton and C. D. Cooper, J. Chem. Phvs. 66, 4325–4329 (1977).

    Article  ADS  Google Scholar 

  20. Z. G. Soos, Chem. Phvs. Lett. 63. 179–183 (1979).

    Article  ADS  Google Scholar 

  21. F. Herman and I. P. Batra, Phys. Rev. Lett. 33. 94–97 (1974).

    Article  ADS  Google Scholar 

  22. See e.g. G. L. Gaines, Jr. “Insoluble Monolayers at Liquid — Gas Interfaces” (Interscience, New York, 1966).

    Google Scholar 

  23. K. B. Blodgett, J. Am. Chem. Soc. 57, 1007–1022 (1935).

    Article  Google Scholar 

  24. K. B. Blodgett and I. Langmuir, Phvs. Rev. 51, 964–982 (1937).

    Article  ADS  Google Scholar 

  25. H. Kuhn, D.Moebius, and H. Buecher in “Techniques of Chemistry, Vol. I-Physical Methods of Chemistry — Part V — Determination of Thermodynamic and Surface Properties” A. Weissberger and B. W. Rossiter, eds. (Wiley — Interscience, New York, 1972) pages 577–702.

    Google Scholar 

  26. H. Kuhn, Pure Appl. Chem. 51. 341–352 (1979).

    Article  Google Scholar 

  27. H. Kuhn, Pure Appl. Chem. 53, 2105–2122 (1981).

    Article  Google Scholar 

  28. See e. g. Thin Solid Films 68 (1980), 99 (1983), 132–134 (1985).

    Google Scholar 

  29. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, J. Colloid Sci. 1. 513–538 (1946).

    Article  Google Scholar 

  30. L. Netzer, R. Iscovici, and J. Sagiv, Thin Solid Films 99. 235–241 (1983).

    Article  ADS  Google Scholar 

  31. L. Netzer, R. Iscovici, and J. Sagiv, Thin Solid Films 100. 67–76 (1983).

    Article  ADS  Google Scholar 

  32. J. Gun, R. Iscovici, and J. Sagiv, J. Colloid Interf. Sci. 101, 201–213 (1984).

    Article  ADS  Google Scholar 

  33. R. W. Murray, Acc. Chem. Res. 13, 135–141 (1980).

    Article  Google Scholar 

  34. R. Maoz and J. Sagiv, Thin Solid Films 132. 135–151 (1985).

    Article  ADS  Google Scholar 

  35. R. G. Nuzzo, F. A. Fusco, and D. A. Allara, J. Am. Chem. Soc. 109, 2358–2368 (1987).

    Article  Google Scholar 

  36. G. Wegner, Z. Naturforschung 24b. 829 (1969).

    Google Scholar 

  37. M. Batley and L. E. Lyons, Mol. Cryst. 3, 357–374 (1968).

    Article  Google Scholar 

  38. E. Clar, J. M. Robertson, R. Schloegl, and W. Schmidt, J. Am. Chem. Soc. 103, 1320–1328 (1981).

    Article  Google Scholar 

  39. E. C. M. Chen and W. E. Wentworth, J. Chem. Phvs. 63, 3183–3191 (1975).

    Article  ADS  Google Scholar 

  40. C. D. Cooper, W. F. Frey, and R. N. Compton, J. Chem. Phys. 69, 2367–2374 (1978).

    Article  ADS  Google Scholar 

  41. D. R. Gray, Ed., “American Institute of Physics Handbook, II Edition” (McGraw-Hill, New York, 1963) pages 9–147 to 9-149.

    Google Scholar 

  42. R. A. Marcus, Disc. Faradav Soc. 29, 21–31 (1960).

    Article  Google Scholar 

  43. L. T. Calcaterra, G. L. Closs, and J. R. Miller, J. Am. Chem. Soc. 105, 670–671 (1983).

    Article  Google Scholar 

  44. J. R. Miller, L. T. Calcaterra, and G. L. Closs, J. Am. Chem. Soc. 106, 3047–3049 (1984).

    Article  Google Scholar 

  45. N. S. Hush, M. N. Paddon-Row, E. Cotsaris, H. Oevering, J. W. Verhoeven, and M. Heppener, Chem. Phvs. Lett. 117, 8–11 (1985).

    Article  ADS  Google Scholar 

  46. P. L. Dutton, R. C. Prince, D. M. Tiede, K. M. Petty, K. J. Kaufmann, K. J. Netzel, and P. M. Rentzepis, Brookhaven Symp. Biol. 28. 213–237 (1977).

    Google Scholar 

  47. I. R. Peterson and G. J. Russell, Thin Solid Films 134, 143–152 (1985).

    Article  ADS  Google Scholar 

  48. S. Garoff, H. W. Deckman, J. H. Dunsmuir, M. S. Alvarez, and J. M. Bloch, J. Phvs. (Les Ulis. Fr.) 47. 701–709 (1986).

    Article  Google Scholar 

  49. I. R. Peterson, J. Mol. Electronics, submitted.

    Google Scholar 

  50. G. G. Roberts, P. S. Vincett, and W. A. Barlow, J. Phys. C 11. 2077–2085 (1978).

    Article  ADS  Google Scholar 

  51. B. Mann and H. Kuhn, J. Appl. Phys. 42, 4398–4405 (1971).

    Article  ADS  Google Scholar 

  52. P. K. Hansma, Ed. “Tunneling Spectroscopy: Capabilities, Applications, and New Techniques” (Plenum, New York, 1982).

    Google Scholar 

  53. W. R. Hertier, J. Org. Chem. 41, 1412–1416 (1976).

    Article  Google Scholar 

  54. J. Baghdadchi, Ph. D. dissertation, Univ. of Mississippi, Dec. 1982.

    Google Scholar 

  55. Y. Miura, C. A. Panetta, and R. M. Metzger, J. Org. Chem. in press.

    Google Scholar 

  56. N. E. Schlotter, M. D. Porter, T. B. Bright, and D. L. Allara, Chem. Phys. Letters 132, 93–98 (1986).

    Article  ADS  Google Scholar 

  57. W. G. Golden, D. D. Saperstein, M. W. Severson, and J. Overend, J. Phvs. Chem. 88, 574–579 (1984).

    Article  Google Scholar 

  58. J. F. Rabolt, M. Jurich, and J. D. Swalen, Applied Spectrosc. 39. 269–272 (1985).

    Article  ADS  Google Scholar 

  59. J. F. Rabolt, F. C. Burns, N. E. Schlotter, and J. D. Swalen, J. Chem. Phys. 78, 946–952 (1983).

    Article  ADS  Google Scholar 

  60. J. D. Swalen and J. F. Rabolt, in “Fourier Transform Infrared Spectroscopy, Vol. 4 (Academic, 1985) pages 283-314.

    Google Scholar 

  61. J. Lindsay, D. Mauzerall, and H. Linschitz, J. Am. Chem. Soc. 105, 6528–6529 (1983).

    Article  Google Scholar 

  62. A. R. McIntosh, J. R. Bolton, J. S. Connolly, K. L. Marsh, D. R. Cook, T.-F. Ho, and A. C. Weedon, J. Phvs. Chem. 90, 5640–5646 (1986).

    Article  Google Scholar 

  63. A. D. Joran, B. A. Leland, G. G. Geller, J. J. Hopfield, and P. B. Dervan, J. Am. Chem. Soc. 106. 6090–6092 (1984).

    Article  Google Scholar 

  64. S. Nishitani, N. Kurata, Y. Sakata, S. Misumi, A. Karen, T. Okada, and N. Mataga, J. Am. Chem. Soc. 105, 7771–7772 (1983).

    Article  Google Scholar 

  65. T. A. Moore, D. Gust, P. Mathis, J.-C. Mialocq, C. Chachaty, R. V. Bensasson, E. J. Land, D. Doizi, P. A. Liddell, W. R. Lehman, G. A. Nemweth, and A. L. Moore, Nature 307, 630–632 (1984).

    Article  ADS  Google Scholar 

  66. C. Krieger, J. Weiser, and H. A. Staab, Tetrahedron Lett. 26, 60550–6058 (1985).

    Article  Google Scholar 

  67. E. E. Polymeropoulos, D. Moebius, and H. Kuhn, Thin Solid Films. 68, 173–190 (1980).

    Article  ADS  Google Scholar 

  68. M. Sugi, K. Sakai, M. Saito, Y. Kawabata, and S. Iizima, Thin Solid Films 132. 69–76 (1985).

    Article  ADS  Google Scholar 

  69. M. Fujihira, K. Nishiyama, and H. Yamada, Thin Solid Films 132, 77–82 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Metzger, R.M., Panetta, C.A. (1987). Langmuir-Blodgett Films of Donor-Sigma-Acceptor Molecules and Prospects for Organic Rectifiers. In: Delhaes, P., Drillon, M. (eds) Organic and Inorganic Low-Dimensional Crystalline Materials. NATO ASI Series, vol 168. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-2091-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2091-1_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-2093-5

  • Online ISBN: 978-1-4899-2091-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics