Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 248))

Abstract

Many investigations have been made on chemical, physical and structural properties of organic superconductors, since the discovery of the first organic superconductor (TMTSF)2PF6 by Jérome, Bechgaard et al. in 1980 [1]. As yet, they are not sufficient enough to yield a definitive picture of the mechanism of superconductivity, and to predict new organic superconductors. At present, more than 30 organic superconductors have been reported, and they have a maximum Tc (midpoint of resistance jump) in the range of 11. 0 – 11. 1 K (a Tc of 12. 8 K was recently observed in one single crystal). The total number of organic systems is still less than 1%, and the maximum Tc is less than 1/10 of those of inorganic systems (Fig. 1). It is an urgent task for chemists to explore a variety of new organic superconductors, and to extend Tc to the range of 15 – 20 K, at least.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Jérome, A. Mazaud, M. Ribault, and K. Bechgaard, J. Phys. Lettres 41: L95 (1980).

    Article  Google Scholar 

  2. For the κ-Cu(NCS)2 salt

    Google Scholar 

  3. H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto, and J. Tanaka, Chem. Lett. 55 (1988)

    Google Scholar 

  4. K. Oshima, H. Urayama, H. Yamochi, and G. Saito, J. Phys, Soc. Jpn., 57: 730 (1988)

    Article  ADS  Google Scholar 

  5. H. Urayama, H. Yamochi, G. Saito, S. Sato, A. Kawamoto, J. Tanaka, T. Mori, Y. Maruyama, and H. Inokuchi, Chem. Lett. 463 (1988)

    Google Scholar 

  6. K. Nozawa, T. Sugano, H. Urayama, H. Yamochi, G. Saito, and M. Kinoshita, ibid. 617 (1988)

    Google Scholar 

  7. K. Oshima, T. Mori, H. Inokuchi, H. Urayama, H. Yamochi, and G. Saito, Phys. Rev. B 37: 938 (1988)

    Article  ADS  Google Scholar 

  8. H. Urayama, H. Yamochi, G. Saito, T. Sugano, M. Kinoshita, T. Inabe, T. Mori, Y. Maruyama, and H. Inokuchi, Chem. Lett. 1057 (1988)

    Google Scholar 

  9. T. Sugano, H. Hayashi, H. Takenouchi, K. Nishikida, H. Urayama, H. Yamochi, G. Saito, and M. Kinoshita, Phys. Rev. B 37: 9100 (1988)

    Article  ADS  Google Scholar 

  10. T. Takahashi, T. Tokiwa, K. Kanoda, H. Urayama, H. Yamochi, and G. Saito, Physica C 153-155: 487 (1988)

    Article  ADS  Google Scholar 

  11. K. Oshima, H. Urayama, H. Yamochi, and G. Saito, ibid. 154: 1148 (1988)

    Google Scholar 

  12. T. Sugano, K. Terui, S. Mino, K. Nozawa, H. Urayama, H. Yamochi, G. Saito, and M. Kinoshita, Chem. Lett. 1171 (1988)

    Google Scholar 

  13. Y. Maruyama, T. Inabe, H. Yamochi, and G. Saito, Solid State Commun. 67: 35 (1988)

    Article  ADS  Google Scholar 

  14. H. Urayama, H. Yamochi, G. Saito, K. Oshima, S. Sato, T. Sugano, M. Kinoshita, A. Kawamoto, J. Tanaka, T. Inabe, T. Mori, Y. Maruyama, and H. Inokuchi. Synth. Met. 27: 393 (1988)

    Article  Google Scholar 

  15. T. Sugano, K. Nozawa, H. Hayashi, K. Nishikida, K. Terui, T. Fukasawa, H. Takenouchi, S. Mino, H. Urayama, G. Saito, and M. Kinoshita, ibid. 27: 325 (1988)

    Google Scholar 

  16. T. Takahashi, T. Tokiwa, K. Kanoda, H. Urayama, H. Yamochi, and G. Saito, ibid. 27: 319 (1988)

    Google Scholar 

  17. K. Oshima, T. Mori, H. Inokuchi, H. Urayama, H. Yamochi, and G. Saito, ibid. 27: 165 (1988)

    Google Scholar 

  18. K. Oshima, H. Urayama, H. Yamochi and G. Saito, ibid. 27: 419, 473 (1988)

    Google Scholar 

  19. S. Katsumoto, S. Kobayashi, H. Urayama, H. Yamochi, and G. Saito, J. Phys. Soc. Jpn. 57: 3672 (1988); for reviews

    Article  ADS  Google Scholar 

  20. G. Saito, H. Urayama, H. Yamochi and K. Oshima, Synth. Met. 27: 331 (1988)

    Article  Google Scholar 

  21. G. Saito, J. J. Appl. Phys., Series 1 165 (1988)

    Google Scholar 

  22. G. Saito, H. Urayama, H. Yamochi and K. Oshima in “Advances in Superconductivity,” ed. by K. Kitazawa and T. Ishiguro, (Springer-Verlag, Berlin, 1989) p. 107

    Chapter  Google Scholar 

  23. H. Urayama, H. Yamochi, G. Saito and K. Oshima, ibid., p. 113

    Google Scholar 

  24. G. Saito and H. Urayama in “The Science of Superconductivity and New Materials,” ed. by S. Nakajima (World Scientific Publ., Singapore, 1989), p. 60; for the KHg(SCN)4 salt

    Google Scholar 

  25. M. Oshima, H. Mori, G. Saito, and K. Oshima, Chem. Lett. 1159 (1989).

    Google Scholar 

  26. S. S. P. Parkin, E. M. Engler, R. R. Schumaker, V. Y. Lee, J. C. Scott, and R. L. Greene, Phys. Rev. Lett. 50: 270 (1983).

    Article  ADS  Google Scholar 

  27. E. B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, P. A. Kononovich, M. V. Karatsovnik, A. V. Zvarykina, and L. I. Buravov, Pis’ma Zh. Eksp. Teor. Fiz. 39:12 (1984).

    Google Scholar 

  28. J. M. Williams, H. H. Wang, M. A. Beno, T. J. Emge, L. M. Sowa, P. T. Copps, F. Behroozi, L. N. Hall, K. D. Carlson, and G. W. Crabtree, Inorg. Chem. 23: 3839 (1984).

    Article  Google Scholar 

  29. H. H. Wang, M. A. Beno, V. Geiser, M. A. Firestone, K. S. Webb, L. Nunez, G. W. Crabtree, K. D. Carlson, J. M. Williams, L. J. Azevedo, J. F. Kwak, and J. E. Schirber, ibid., 24: 2466 (1985).

    Google Scholar 

  30. T. Mori and H. Inokuchi, Solid State Commun. 64: 335 (1987).

    Article  ADS  Google Scholar 

  31. R. N. Lyubovskaya, R. B. Lyubovskii, R. P. Shibaeva, M. Z. Aldoshina, L. M. Goldenberg, L. R. Rozenberg, M. L. Khidekel, and Yu. F. Shulpyakov, Pis’ma Zh. Eksp Teor. Fiz. 42: 380 (1985).

    Google Scholar 

  32. R. N. Lyuvobskaya, E. A. Zhilyaeva, A. V. Zvarykina, V. N. Laukhin, R. B. Lyubovskii, and S. I. Pestoskii, ibid. 45:416 (1987).

    Google Scholar 

  33. E. B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, R. P. Shibaeva, E. E. Kostyuchenko, A. G. Komenko, Yu V. Sushko, and A. V. Zvarykina, ibid. 40: 387 (1984).

    Google Scholar 

  34. V. N. Laukhin, E. E. Kostyuchenko, Yu. V. Sushko, I. F. Shchegolev, and E. B. Yagubskii, ibid. 41:68 (1985)

    Google Scholar 

  35. K. Murata, M. Tokumoto, H. Anzai, H. Bando, G. Saito, K. Kajimura, and T. Ishiguro, Solid State Commun. 54:1236 (1985).

    Google Scholar 

  36. V. F. Kaminskii, T. G. Prokhoroea, R. P. Shibaeva, and E. B. Yagubskii, Pis’ma Zh. Eksp. Teor. Fiz. 41:15 (1984).

    Google Scholar 

  37. H. Kobayashi, R. Kato, A. Kobayashi, Y. Nishio, K. Kajita, and W. Sasaki, Chem. Lett. 789 and 833 (1986).

    Google Scholar 

  38. A. Kobayashi, R. Kato, H. Kobayashi, S. Moriyama, Y. Nishio, K. Kajita, and W. Sasaki, ibid. 459 (1987).

    Google Scholar 

  39. P. C. W. Leung, T. J. Emge, M. A. Beno, H. H. Wang, J. M. Williams, V. Petricek, and P. Coppens, J. Am. Chem. Soc. 106: 7644 (1984).

    Article  Google Scholar 

  40. A. J. Schultz, H. H. Wang and J. M. Williams, ibid. 105: 7853 (1986).

    Google Scholar 

  41. S. Kagoshima, Y. Nogami, M. Hasumi, H. Anzai, M. Tokumoto, G. Saito, and N. Mori, Solid State Commun. 69: 1177 (1989).

    Article  ADS  Google Scholar 

  42. G. Saito, T. Enoki, K. Toriumi, and H. Inokuchi, ibid. 42: 557 (1982).

    Google Scholar 

  43. D. Schweitzer, P. Bele, H. Brunner, E. Gogu, U. Haeberlen, I. Hennig, I. Klutz, P. Swietlik, and H. J. Keller, Z. Phys. B-Condensed Matter 67: 489 (1987).

    Article  ADS  Google Scholar 

  44. M. Tokumoto, H. Bando, K. Murata, H. Anzai, N. Kinoshita, K. Kajimura, T. Ishiguro, and G. Saito, Synth. Met. 13:9(1986).

    Article  Google Scholar 

  45. J. M. Williams, M. A. Beno, H. H. Wang, U. W. Geiser, T. J. Emge, P. C. W. Leung, G. W. Crabtree, K. D. Carlson, L. J. Azevedo, E. L. Venturini, J. E. Shirber, J. F. Kwak, and M.-H. Wangbo, Physica 136B:371 (1986)

    Google Scholar 

  46. T. J. Kistenmacher, Solid State Commun. 63: 977 (1987).

    Article  ADS  Google Scholar 

  47. T. Mishima, H. Kusuhara, Y. Ueba, K. Tada, and G. Saito, 56th Annual Meeting of Japan. Soc. of Applied Physics, April, 1989.

    Google Scholar 

  48. T. Mori, Private communication.

    Google Scholar 

  49. K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, and H. J. Keller, Mol. Cryst. Liq. Cryst. 108: 359 (1984).

    Article  Google Scholar 

  50. J. W. Jeffery, Nature 159: 610 (1947)

    Article  ADS  Google Scholar 

  51. R. W. G. Wyckoff, “Crystal Structures,” 2nd Ed., Vols. I-V (Interscience, New York, 1963-65).

    Google Scholar 

  52. Proc. Int. Conf. on Sci. and Tech. of Synth. Metals (ICSM’ 88), Synth. Met., 27 (1988) and 28 (1989).

    Google Scholar 

  53. A. Ugawa, G. Ojima, K. Yakyshi, and H. Kuroda, Phys. Rev. B 38: 5122 (1988).

    Article  ADS  Google Scholar 

  54. D. Schweitzer, K. Polychroniadis, K. Klutz, H. J. Keller, I. Hennig, I. Heinen, U. Haeberlen, E. Gogu, and S. Gärtner, Synth. Met. 27: 465 (1988).

    Article  Google Scholar 

  55. J. E. Schirber and C. J. M. Northrup, Jr., Phys. Rev. B10: 3818 (1974).

    ADS  Google Scholar 

  56. K. Oshima, R. C. Yu, P. M. Chaikin, H. Urayama, H. Yamochi, and G. Saito, in preparation.

    Google Scholar 

  57. Y. Iye in “Studies of High Temperature Superconductors,” ed. by A. V. Narlikar (NOVA Science Pub. Inc., 1989), p. 263.

    Google Scholar 

  58. R. J. Elliott, Phys. Rev. 96: 266 (1954).

    Article  ADS  MATH  Google Scholar 

  59. Y. Hasegawa and H. Fukuyama, J. Phys. Soc. Jpn. 56: 877 (1987).

    Article  ADS  Google Scholar 

  60. T. Osada, R. Yagi, S. Kagoshima, N. Miura, M. Oshima, and G. Saito, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saito, G. (1990). Frontiers of Organic Superconductors. In: Metzger, R.M., Day, P., Papavassiliou, G.C. (eds) Lower-Dimensional Systems and Molecular Electronics. NATO ASI Series, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2088-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2088-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2090-4

  • Online ISBN: 978-1-4899-2088-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics