Skip to main content

Design and Synthesis of Polyheterotetraheterafulvalenes, Metal 1,2-Diheterolenes, and Their Low-Dimensional Conducting and Superconducting Salts

  • Chapter
Lower-Dimensional Systems and Molecular Electronics

Part of the book series: NATO ASI Series ((NSSB,volume 248))

Abstract

Most of the known organic and metalloorganic crystalline conductors (and superconductors) have been based on the tetrathiafulvalene derivatives, transition-metal 1,2-dithiolenes and selenium- or tellurium- analogs [1]–[5]. The synthesis and physicochemical properties of these compounds reported by 1988 are summarized in a number of excellent review articles [6]–[12]. Recent work, concerning synthesis and physicochemical properties of these and similar compounds, is described in refs [13]–[56] and in references cited therein. Generally, 2-thioxo-l,3-dithioles and selenium or tellurium analogs have been used as starting materials for preparation of both tetraheterafulvalenes and metal 1,2-diheterolenes. For a systematic investigation, we have divided the simplest 2-thioxo-l,3-dithioles in classes, based on the number and the nature of the additional heteroatoms to the thioxo-dithiole group (see [41]). Table 1 shows examples of the simplest 2-thioxo-l,3-dithioles divided in classes: Class O contains compounds without additional heteroatoms; Class 1 contains compounds with a sulfur heteroatom in an additional ring or chain; Class 2 contains compounds with a nitrogen heteroatom in an additional ring or chain; and so on. One can design similar classification tables for the selenium, tellurium, oxygen and nitrogen analogs, as well as for their self- or cross-coupling products (poly-heterotetraheterafulvalenes) and for the corresponding metal 1,2-heterolenes and similar compounds [57] –[60]. The addition of groups and heteroatoms to the tetra-heterofulvalene core or to the metal 1,2-diheterolene core play an important role in the chemical and physicochemical properties of these compounds (see for example [6]). Also, they play an important role in the crystal structure and physical properties of the corresponding charge transfer complexes (CTC), cation radical salts (CRS) and cation deficient metal 1,2-diheterolenes (CDMD) (see for example [4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Inokuchi “New Organic Superconductors” Angew. Chem.,Int. Ed. Engl. 27, 1747 (1988).

    Article  Google Scholar 

  2. T. Ishiguro “Superconductivity in Organic Charge Transfer Salts” Physica C, 153-155, 1055 (1988).

    Article  ADS  Google Scholar 

  3. M. Tokumoto “Experimental Study on the Superconductivity in Organic Metals, β-(BEDTTTF)2X” Researches of the Electrochemical Laboratory 1-1-4, Umezono, Tsukuba, Ibaraki, Japan (1988).

    Google Scholar 

  4. J.M. Williams, H.H. Wang, T.J. Emge, U. Geiser, M.A. Beno, P.C.W. Leung, K.D. Carlson, R. J. Thorn, A.J. Schultz, and W.H. Whangbo, “Rational Design of Synthetic Metal Superconductors” Progr. Inorg. Chem. 35, 51 (1987).

    Article  Google Scholar 

  5. L. Alcacer and H. Novais “linear Chain 1,2-Dithiolene Complexes” in “Extended Linear Chain Compounds” Ed. J.S. Miller, Plenum, N.Y. 3, 319 (1983).

    Article  Google Scholar 

  6. G. Schukat, A.M. Richter, and E. Fanghanel “Synthesis, Reactions, and Selected Physico-chemical Properties of 1,3-and 1,2-Tetrachalcogenefulvalenes” Sulfur Reports, 7, 155 (1987).

    Article  Google Scholar 

  7. A. Krief “Syntheses of Tetraheterafulvalenes and of Vinylene Triheterocarbonates-Strategy and Practice” Tetrahedron 42, 1209 (1986).

    Article  Google Scholar 

  8. R.N. Lyubovskaya “Organic Metals and Superconductors Based on Tetrathiofulvalene Derivatives” Russ. Chem. Rev. 52, 736 (1983).

    Article  ADS  Google Scholar 

  9. M. Narita and C.U. Pittman, Jr., “Preparation of Tetrathiafulvalenes (TIF) and their Selenium Analogs-Tetraselenafulvalenes (TSeF)” Synthesis 489 (1976).

    Google Scholar 

  10. U.T. Mueller-Westerhoff and B. Vance “Dithiolenes and Related Species, Including Dithiolene-like Ligands” Comprehensive Coord. Chem. 2, (chapt.15, part 5), Ed.G. Wilkinson, Pergamon Press (1987).

    Google Scholar 

  11. R.P. Burns and C.A Mc Auliffe, “1,2-Dithiolene Complexes of Transition Metals” Adv. Inorg. Chem. Radiochem. 22, 303 (1979).

    Article  Google Scholar 

  12. S. Alvarez, R. Vicente, and R. Hoffmann, “Dimerization and Stacking in Transition-Metal Bisdithiolanes and Tetrathiolates”, J. Am. Chem. Soc. 107, 6253 (1985).

    Article  Google Scholar 

  13. K. Lerstrup, I. Johannsen, and M. Jorgensen, Synth. Metals 27, B9 (1988).

    Article  Google Scholar 

  14. R. D. McCullough, M.D. Mays, A.B. Bailey, and D.O. Cowan, Synth. Metals 27, B487(1988)

    Article  Google Scholar 

  15. A. B. Bailey, R.D. McCullough, M.D. Mays, D.O. Cowan, and K.A. Lerstrup, Synth. Metals 27, B425 (1988); D.O. Cowan, this volume.

    Article  Google Scholar 

  16. S. Bittner, A. Maradpour, and P. Krief, Synthesis 132 (1989).

    Google Scholar 

  17. A.S. Dhindsa, M.R. Bryce, J.P. Iioyd, M.C. Petty, K. Kobayashi and H. Tukada, J. Chem. Soc., Chem. Commun., 1391 (1988)

    Google Scholar 

  18. A.S. Dhindsa, M.R. Bryce, J.P.L. Loyd, and M.C. Perry, Thin Solid Films 165, L97(1988): Synth. Metals 27, B563 (1988); R.M. Metzger, this volume.

    Article  Google Scholar 

  19. Y.A. Jackson, C.L. White, M.V. Lakshmikantham and M.P. Cava, Tetrahedron Lett. 28, 5635 (1988).

    Article  Google Scholar 

  20. J.M. Fabre, A.K. Gouasmia, L. Giral and D. Shasseau, Tetrahedron Lett., 29, 2185 (1988).

    Article  Google Scholar 

  21. O.G. Safier, D.V. Nazarov, V.V. Zorin, and D.L. Rakhmankulov, Khim. Geterotsikl. Soedin, 61, 852 (1988)

    Google Scholar 

  22. M. Ishida, K. Sugiuva, K. Takagi, H. Hiraoka, and S. Kato, Chem. Lett. 1705 (1988)

    Google Scholar 

  23. M.E. Jung, R.B. Blum, B.J. Gaede, and M.R. Gisler, Heterocvcles 28, 93 (1988)

    Article  Google Scholar 

  24. T. Suzuki, H. Yamochi, G. Srdanov, K. Hinkelmann and F. Wudl, J. Am. Chem. Soc. 111, 3108 (1989) and ref.[13] cited therein.

    Article  Google Scholar 

  25. G.C. Papavassiliou, G.A. Mousdis, S.Y. Yiannopoulos, V.C. Kakoussis and J.S. Zambounis, Synth. Metals 27, B373 (1988).

    Article  Google Scholar 

  26. A.M. Kini, B.D. Gates, S.F. Tykto, T.J. Allen, S.B. Kleinjan, H.H. Wang, L.K. Montgomery, M.A. Beno, and J.M. Williams, Synth. Metals 27, B445 (1988).

    Article  Google Scholar 

  27. J. Larsen and C. Lenoir, Synthesis 134 (1989).

    Google Scholar 

  28. J. Larsen and K. Bechgaard, J. Qrg. Chem. 52, 3285 (1987); K.S. Varma, J. Evans, S. Edge, A.E. Underhill, G. Bojesen, and J. Becher, J. Chem. Soc., Chem. Commun. 257 (1989).

    Article  Google Scholar 

  29. N. Iwasawa, H. Urayama, H. Yamochi, G. Saito, K. Imaeda, T. Mori, Y. Maruyama, H. Inokuchi, T. Enoki, Y. Higughi, and N. Yasuoka, Synthetic Metals 27, B463 (1988).

    Article  Google Scholar 

  30. P.J. Nigrey, B. Morosin, and E. Duesler, Synth. Metals 27 B481 (1988); P.J. Nigrey, B. Morosin, and J.F. Kwak, in “Novel Superconductivity” Ed.S.A. Wolf and V.Z. Kresin, Plenum, 171 (1987).

    Google Scholar 

  31. Ya.N. Kreitsberga, K.A. Bolodis, Z.L. Kraupsha, and O.Ya. Neiland, Zh. Org. Chim. 24, 1243 (1988).

    Google Scholar 

  32. W. Kolling, M. Augustin, and R. Ihrke, Synthesis 655 (1987).

    Google Scholar 

  33. R.R. Schumaker, E. Dupart, J.P. Morand, C. Coulon and P. Delhaes, to be published.

    Google Scholar 

  34. P.J. Nigrey, J. Am. Chem. Soc. 53, 201 (1988); Synth. Metals 27, B365 (1988).

    Google Scholar 

  35. P. Morand, R. Lapouyade, P. Delhaes, M. Vanderyver, J. Richard, and A. Barraud, Synth. Metals 27, 569 (1988).

    Article  Google Scholar 

  36. A. Otsuka, G. Saito, T. Nakamura, M. Matsumoto, K. Kawabata, K. Honda, M. Koto, and M. Kurahashi, Synth. Metals 27, B575 (1988).

    Article  Google Scholar 

  37. S.-Y. Hsu and L. Y. Chiang, Synth. Metals 27, B651 (1988)

    Article  Google Scholar 

  38. G. Seitz and P. Imming, Arch. Phaim 321, 757 (1988).

    Google Scholar 

  39. W. Chen, M.P. Cava, M.A. Takassi, and R.M. Metzger, J. Am. Chem. Soc. 110, 7903 (1988).

    Article  Google Scholar 

  40. T. Nogami, Jpn.J. Appl. Phys. Series 1, p. 197 (1988).

    Google Scholar 

  41. S. Rajeswari, Y.A. Jackson, and M.P. Cava, J. Am. Chem. Soc., 110. 1089 (1988).

    Google Scholar 

  42. H. Nakano, T. Nogami, and Y. Shirota, Bull. Chem. Soc. Jpn. 61, 2973 (1988).

    Article  Google Scholar 

  43. G.C. Papavassiliou, J.S. Zambounis, G.A. Mousdis, V. Gionis and S.Y. Yiannopoulos, Mol. Cryst. Iiq. Cryst. 156. 269 (1988).

    Article  Google Scholar 

  44. G.C. Papavassiliou, V. Gionis, S.Y. Yiannopoulos, J.S. Zambounis, G.A. Mousdis, K. Kobayashi, and K. Umemoto, Mol. Cryst. Liq. Cryst. 156, 277 (1988).

    Article  Google Scholar 

  45. G.C. Papavassiliou, G.A. Mousdis, S.Y. Yiannopoulos and J.S. Zambounis, Chem. Scripta 28, 3654 (1988), and unpublished work for Se-analogs.

    Google Scholar 

  46. G.C. Papavassiliou, V.C. Kakoussis, G.A. Mousdis, and J.S. Zambounis, Chem. Scripta, in press and unpublished work for Se-analogs.

    Google Scholar 

  47. G.C. Papavassiliou, V.C. Kakoussis, J.S. Zambounis, G.A. Mousdis, and C.W. Mayer, Chem. Scripta, in press and unpublished for S and Se-analogs.

    Google Scholar 

  48. R. Kato, H. Kobayashi, K. Kim, A. Kobayashi, Y. Sasaki, T. Mori, and H. Inokuchi, Synth. Metals 27, B359 (1988).

    Article  Google Scholar 

  49. H.H. Wang et al, Chem. Materials, 1, 140 (1989).

    Article  Google Scholar 

  50. R.A. Clark and A.E. Underhill, Synth. Metals 27, B515 (1988); R.A. Clark, A.E. Underhill, I.D. Parker and R.H. Friend, J. Chem. Soc., Chem. Commun 228 (1989).

    Article  Google Scholar 

  51. C. Le Coustumer, N. Bennasser, and Y. Mollier, Synth. Metals 27, B523 (1988).

    Article  Google Scholar 

  52. T. Nakamura, H. Tanaka, M. Matsumoto, H. Tochibana, E. Manda, and Y. Kawabata, Synth. Metals 27, B601 (1988); T. Nakamura et al Chem. Lett. 367 (1989).

    Article  Google Scholar 

  53. T. Nakamura, T. Nogami, and Y. Shirota, Bull. Chem. Soc. Jpn 60, 3447 (1987).

    Article  Google Scholar 

  54. I. Tabushi, K. Yamamura, and H. Nonoguchi, Chem. Lett. 1373 (1987).

    Google Scholar 

  55. R. Vicente, J. Ribas, S. Alvarez. A. Segui, X. Solans, and M. Verdaguer, Inorg. Chem. 26, 4004 (1987)

    Article  Google Scholar 

  56. R.M. Olk et al, Z. anorg. Allg. Chem. 456, 131 (1988).

    Article  Google Scholar 

  57. R. Vicente, J. Ribas, C. Faulman, J.-P. Legros, and P. Cassoux, C.R. Acad. Sci. Paris 305, Series II, 1055 (1987).

    Google Scholar 

  58. R. Vicente, J. Ribas, X. Solans, M. Font-Altaba, A. Mari, P. deLoth, and P. Cassoux, Inorg. Chim. Acta, 132, 229 (1987).

    Article  Google Scholar 

  59. D.M. Giolando, T.B. Rauchfuss and A.L. Rheingold, Inorg. Chem. 26. 1636 (1987).

    Article  Google Scholar 

  60. R.M. Olk, W. Dietzsth, J. Mattusch, J. Stach, C. Nieke, E. Hoyer, W. Meiler and W. Robien, Z. anorg. Allg. Chem. 544, 199 (1987); ref [13] cited therein. 54. H. Shiozaki, H. Nakazumi, Y. Nakado, and T. Kitao, Chem. Lett., 2393 (1987).

    Article  Google Scholar 

  61. A. Kobayashi, H. Kim, Y. Sasaki, S. Moriyama, Y. Nishio, K. Kajita, W. Sasaki, R. Kato, and H. Kobayashi, Synth. Metals 27, B339 (1988).

    Article  Google Scholar 

  62. J. Amzil, J.-M. Catel, G. LeCoustumer, Y. Mollier, and J.-P. Sauve, Bull. Soc. Chem. France No 1, 101 (1988); see also ref [66] here.

    Google Scholar 

  63. R.R. Schumaker, S. Rajeswari, M.V. Joshi, M.P. Cava, M.A. Takassi, and R.M. Metzger, J. Am. Chem. Soc., 111 308 (1989)

    Article  Google Scholar 

  64. Z. Yoshida and T. Sugimoto, Angew. Chem. Int. Ed. Engl. 27, 1573 (1988).

    Article  Google Scholar 

  65. U. Zoller, Tetrahedron. 44, 7413 (1988).

    Article  Google Scholar 

  66. R. Gompper and H.-U. Wagner, Angew. Chem. Int. Ed. Eng. 27, 1437 (1988).

    Article  Google Scholar 

  67. G.C. Papavassiliou, Z. Naturforsch, 36b, 1200 (1981).

    Google Scholar 

  68. G.C. Papavassiliou, Mol. Liq. Cryst., 86, 159 (1982).

    Article  Google Scholar 

  69. G.C. Papavassiliou, Z. Naturfors. 37b, 825(1982).

    Google Scholar 

  70. G.C. Papavassiliou, J. Physique C3, 1257 (1983).

    Google Scholar 

  71. G.C. Papavassiliou, A.M. Cotsilios and C.S. Jacobsen, J. Mol. Struct., 115, 41 (1984).

    Article  ADS  Google Scholar 

  72. G.C. Papavassiliou, Chem. Scripta 25,167(1985).

    Google Scholar 

  73. G.C. Papavassiliou, S.Y. Yiannopoulos and J.S. Zambounis, Mol. Cryst. Liq. Cryst. 120, 333 (1985).

    Article  Google Scholar 

  74. G.C. Papavassiliou, E.I. Kamitsos and J.S. Zambounis. Mol. Cryst. Liq. Cryst. 120, 315 (1985).

    Article  Google Scholar 

  75. G.C. Papavassiliou, J.S. Zambounis, A.E. Underhill, B. Kaye and H.P. Geserich, Mol. Cryst. Liq. Cryst. 134, 53 (1986).

    Article  Google Scholar 

  76. A.E. Underhill, B. Kaye, G.C. Papavassiliou and S.Y. Yiannopoulos, Mol. Cryst. Liq. Cryst. 134, 59(1986).

    Article  Google Scholar 

  77. G.C. Papavassiliou, H.P. Geserich, S.Y. Yiannopoulos and J.S. Zambounis, J. Mol. Structure, 143, 215(1986).

    Article  ADS  Google Scholar 

  78. G.C. Papavassiliou, Chim. Chron. (New Series), 15, 161 (1986).

    Google Scholar 

  79. A. Terzis, A. Hountas and G.C. Papavassiliou, Acta Crystallor. C42, 1584(1986).

    Google Scholar 

  80. G.C. Papavassiliou, S.Y. Yiannopoulos, and J.S. Zambounis, J. Chem. Soc. Chem. Commun. 820, (1986).

    Google Scholar 

  81. G.C. Papavassiliou, S.Y. Yiannopoulos, and J.S. Zambounis, Physica 143B. 310 (1986).

    Google Scholar 

  82. G.C. Papavassiliou, J.S. Zambounis and S.Y. Yiannopoulos, Physica 143 B, 307 (1986).

    Google Scholar 

  83. G.C. Papavassiliou, J.S. Zambounis and A.G. Mousdis, Abstr. of Papers of XXIV Int. Conf. Coord. Chem., August 24–29, 1986, Athens, Greece; Chim. Chron. New Series (Special Issue) August 1986, p. 246; see also ref [76] here.

    Google Scholar 

  84. G.C. Papavassiliou, S.Y. Yiannopoulos, and J.S. Zambounis, Chem. Scripta. 27, 265 (1987).

    Google Scholar 

  85. G.C. Papavassiliou, J.S. Zambounis, and S.Y. Yiannopoulos, Chem. Scripta 27, 265 (1987); and unpublished work.

    Google Scholar 

  86. G.C. Papavassiliou, A. Terzis, A.E. Underhill, H.P. Geserich, B. Kaye, A. Hountas and S.Y. Yiannopoulos, Synth. Metals. 19, 703 (1987).

    Article  Google Scholar 

  87. A. Terzis, E.I. Kamitsos, V. Psycharis, J.S. Zambounis, J. Swiatek and G.C. Papavassiliou, Synth. Metals. 19, 481 (1987).

    Article  Google Scholar 

  88. G.C. Papavassiliou, S.Y. Yiannopoulos, J.S. Zambounis, K. Kobayashi, and K. Umemoto, Chem. Lett. 1279 (1987).

    Google Scholar 

  89. G.C. Papavassiliou, G.A. Mousdis, V. Gionis, J.S. Zambounis and S.Y. Yiannopoulos, Z. Naturfors. 42b. 1050 (1987).

    Google Scholar 

  90. G.C. Papavassiliou, A.E. Underhill, B. Kaye, H.P. Geserich, A. Terzis and S.Y. Yiannopoulos. Material Science, 13, 185 (1987).

    Google Scholar 

  91. G.C. Papavassiliou, S.Y. Yiannopoulos and J.S. Zambounis, in “Organic and Inorganic Low Dimensional Crystalline Materials” Ed. P. Delhaes, and M. Drillon, Plenum, 168, 305 (1987); ref [8] cited therein.

    Google Scholar 

  92. G.C. Papavassiliou, G. Z. Mousdis, J.S. Zambounis and S.Y. Yiannopoulos, in Organic and Inorganic Low Dimensional Crystalline Materials” Ed. P. Delhaes and M. Drillon, Plenum 168, 301 (1987).

    Google Scholar 

  93. V. Psycharis, A. Hountas, A. Terzis and G.C. Papavassiliou, Acta Cryst. C., 44, 125 (1988).

    Article  Google Scholar 

  94. A. Terzis, V. Psycharis, A. Hountas and G.C. Papavassiliou, Acta Cryst. C44, 128 (1988).

    Google Scholar 

  95. K. Kikuchi, H. Kamio, K. Saito, G.C. Papavassiliou, K. Kobayashi, I. Ikemoto and S.Y. Yiannopoulos, Bull. Chem. Soc. Jpn., 61, 741 (1988).

    Article  Google Scholar 

  96. J.S. Zambounis, E. I. Kamitsos, A. Terzis and G.C. Papavassiliou, J. Mol. Structure, 174, 189 (1988).

    Article  ADS  Google Scholar 

  97. A. Terzis, A. Hountas, and G.C. Papavassiliou, Sol. St. Commun., 66, 1161 (1988).

    Article  ADS  Google Scholar 

  98. J.S. Zambounis, E.I. Kamitsos, M.A. Karakassides and G.C. Papavassiliou, Proc. XIth Int. Conf. Raman Spectrosc. (London 5–9 Sept. 1988), Ed. R. J. H. Clark and D. A. Long, J. Wiley and Sons, 425 (1988).

    Google Scholar 

  99. A. Terzis, A. Hountas, A.E. Underhill, A. Clark, B. Kaye, S.Y. Yiannopoulos, G. Mousdis and G.C. Papavassiliou, Synth. Metals. 27, B97 (1988).

    Article  Google Scholar 

  100. G.C. Papavassiliou, G.A. Mousdis, J.S. Zambounis, A. Terzis, A. Hountas, B. Hilti, C.W. Mayer and J. Pfeiffer, Synth. Metals. 27, B379 (1988).

    Article  Google Scholar 

  101. A. Terzis and G.C. Papavassiliou, H. Kobayashi, A. Kobayashi, Acta Cryst. in press.

    Google Scholar 

  102. A. Hountas, A. Terzis, G.C. Papavassiliou, B. Hilti and J. Pfeiffer, Acta Cryst. in press; A. Trerzis, A. Hountas, G.C. Papavassiliou, B. Hilti and J. Pfeiffer, Acta Cryst., in press.

    Google Scholar 

  103. A. Hountas, A. Terzis, G.C. Papavassiliou, B. Hilti, M. Burkle, C.W. Mayer and J.S. Zambounis, Acta Cryst., in press.

    Google Scholar 

  104. B. Hilti et al to be published; M. M. Freund and B. Hilti, Eur. Conf. Abst.; 9th Gen. Conf. Condensed Matter, (6–9 March 1989, Nice, France) 13A, I-61.

    Google Scholar 

  105. K. Kikuchi, Y. Ishikawa, K. Saito, I. Ikemoto, and K. Kobayashi, Synth. Metals, 27, B391 (1988) and refs therein.

    Article  Google Scholar 

  106. A.M. Kini, M.A. Beno, D. Son, H.H. Wang, K.D. Carlson, L.C. Porter, U. Welp, B.A. Vogt, J.M. Williams, D. Jung, M. Evain, M.-H. Whangbo, D.L. Overmyer and J.E. Schirber, Sol. St. Commun., 69, 503 (1989).

    Article  ADS  Google Scholar 

  107. J.M. Fabre, L. Giral, E. Dupart, C. Coulon, J.P. Manceau and R. Delhaes, J. Chem. Soc., Chem. Commun., 1477 (1983).

    Google Scholar 

  108. C. Mayer, J. Zambounis, and G.C. Papavassiliou, unpublished: E1,E2 of MDTTTF, EDTTTF etc are lower but close to those of BEDTTTF: see also refs [39],[58] cited in ref [38] here.

    Google Scholar 

  109. N. Plarac, L.W.J. Still, M.S. Chauham and D.M. McKinnon, Can J. Chem., 53, 836 (1975); refs [32], [65] cited in ref[6] here.

    Article  Google Scholar 

  110. G.A. Mousdis, V.C. Kakoussis and G.C. Papavassiliou, unpublished work: (4) is a red solid, mp=138°C; (6) is a yellow solid, mp=45° (8) is a greenish-yel-lowsolid, mp=171°C;(21b)mp=152°C;(21c)mp=116°C;(22b)mp=176°C;(22c) mp=138°C see also ref [109] herein.

    Google Scholar 

  111. R.R. Schumaker, V.Y. Lee, and E.M. Engler, J. Physique C3 44, 1139 (1983).

    Google Scholar 

  112. G.C. Papavassiliou, V.C. Kakoussis and G.A. Mousdis, to be published, see also ref [40] herein.

    Google Scholar 

  113. V.Y. Lee, E.M. Engler, R.R. Schumaker, and S.S.P. Perkin J. Chem. Soc. Chem. Commun. 236 (1983)

    Google Scholar 

  114. G.C. Papavassiliou and G.A. Mousdis unpublished work.

    Google Scholar 

  115. G.A. Mousdis, V.K. Kakoussis and G.C. Papavassiliou, this volume and unpub lished work.

    Google Scholar 

  116. H. Poleschner, Z. Chem. 26, 138(1986).

    Article  Google Scholar 

  117. H. Poleschner and E. Fanghanel, J. Prakt. Chem. 324 691 (1982).

    Article  Google Scholar 

  118. G.C. Papavassiliou and S.Y. Yiannopoulos, unpublished work.

    Google Scholar 

  119. S. Lahner, Y. Wakatsuki, and H. Kish, Chem. Ber. 120, 1011 (1987).

    Article  Google Scholar 

  120. M.V. Lakshmikantham and M.P. Cava, J. Qrg. Chem. 45, 2632 (1980).

    Article  Google Scholar 

  121. E.M. Engler, V.V. Patel and R.R. Schumaker, Tetrahedron Lett. 22, 2035 (1981)

    Article  Google Scholar 

  122. R.R. Schumaker and E.M. Engler, J. Am. Chem. Sol., 102, 6652 (1980).

    Article  Google Scholar 

  123. J. Pouget, in “Organic and Inorganic Low-Dimensional Crystalline Materials”, Ed. P. Delhaes and M. Drillon, Plenum 168, 185 (1987).

    Google Scholar 

  124. M. Tokumoto, H. Anzai, K. Kurata, K. Kajimura and T. Ishiguro, Jpn. J. Appl. Physics 26, suppl. 26-3, 1977 (1987); Synth. Metals 27A. 251 (1988).

    Google Scholar 

  125. A. Ugawa, G. Qjima, K. Yokushi and H. Kuroda, Synth. Metals 27, A445 (1988) and refs therein;G. Saito, this volume.

    Article  Google Scholar 

  126. H. Kobayashi, R. Kato, A. Kobayashi, S. Moriyama, Y. Nichio, K. Kajita and W. Sasaki, Synt. Metals 27, A283 (1980); R. Kato et al Chem. Lett. 507 (1987)and refs therein.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papavassiliou, G.C. (1990). Design and Synthesis of Polyheterotetraheterafulvalenes, Metal 1,2-Diheterolenes, and Their Low-Dimensional Conducting and Superconducting Salts. In: Metzger, R.M., Day, P., Papavassiliou, G.C. (eds) Lower-Dimensional Systems and Molecular Electronics. NATO ASI Series, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2088-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2088-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2090-4

  • Online ISBN: 978-1-4899-2088-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics