Skip to main content

Genetic Differences in Response to Cocaine and Stimulant Drugs

  • Chapter

Abstract

The term psychomotor stimulant generally refers to pharmacologically active compounds recognized by their prominent ability to enhance motor activity through their activation of the central nervous system. This class of agents includes cocaine, amphetamine, and caffeine. These and other compounds included in this pharmacological class differ from one another in their chemical structures and in their mechanisms of direct action on brain cells (Ritz et al., 1987; Miller et al., 1989; Snyder, 1985; Frantz, 1985; Johanson and Fischman, 1989; Pitts and Marwah, 1988). These compounds share the common property of selectively activating neural firing rates in specific regions of the brain (Wechsler et al., 1979; London et al., 1986; Porrino and Kornetsky, 1988; Nehlig et al., 1988), and they induce similar but nonidentical behavioral changes (Balster, 1988; Snyder, 1985; Gold et al., 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., 1968, Reactions to coffee and alcohol in monozygotic twins, J. Psychosom. Res. 12:199–203.

    Article  Google Scholar 

  • Abelson, H. I., and Miller, J. D., 1985, A decade of trends in cocaine use in the household population, NIDA Res. Monogr. 61:35–49.

    PubMed  CAS  Google Scholar 

  • Adams, E. H., Gfroerer, J. C., Rouse, B. A., and Kozel, N. J., 1986, Trends in prevalence and consequences of cocaine use, Adv. Alcohol Subst. Abuse 6:49–71.

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog, J. E., 1974, Food intake and anorexia after selective forebrain norepinephrine loss, Brain Res. 82:211–240.

    Article  PubMed  CAS  Google Scholar 

  • Alpern, H. P., and Greer, C. A., 1977, A dopaminergic basis for the effects of amphetamine on a mouse preadolescent hyperkinetic model, Life Sci. 21:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Anisman, H., 1976, Effects of scopolamine and d-amphetamine on locomotor activity before and after shock: A dialled analysis in mice, Psychopharmacology 48:165–173.

    Article  PubMed  CAS  Google Scholar 

  • Anisman, H., and Kokkindis, L., 1975, Effect of scopolamine, d-amphetamine and other drugs affecting catecholamines on spontaneous locomotor activity in mice, Psychopharmacology 45:55–63.

    Article  CAS  Google Scholar 

  • Azzaro, A. J., and Rutledge, C. O., 1973, Selectivity of release of norepinephrine, dopamine and 5-hydroxytryptamine by amphetamine in various regions of rat brain, Biochem. Pharmacol. 22:2801–2813.

    Article  PubMed  CAS  Google Scholar 

  • Baker, F. M., 1989, Cocaine psychosis, J. Natl. Med. Assoc. 81:987–1000.

    PubMed  CAS  Google Scholar 

  • Baker, H. A., Joh, T. H., and Reis, D. J., 1980, Genetic control of the number of midbrain dopaminergic neurons in inbred strains of mice: Relationship to size and neuron density in the striatum, Proc. Natl. Acad. Sci. U.S.A. 77:4369–4373.

    Article  PubMed  CAS  Google Scholar 

  • Baker, H., Joh, T. H., and Reis, D. J., 1982, Time of appearance during development of differences in nigrostriatal tryosine hydroxylase activity in two inbred mouse strains, Dev. Brain Res. 4:157–165.

    Article  CAS  Google Scholar 

  • Baker, H., Joh, T. H., Ruggiero, D. A., and Reis, D. J., 1983, Variations in number of dopamine neurons and tyrosine hydroxylase in the hypothalamus of two mouse strains, J. Neurosci. 3:832–843.

    PubMed  CAS  Google Scholar 

  • Baker, H., Sved, A. F., Tucker, L. W., Alden, S. M., and Reis, D. J., 1985, Strain differences in pituitary prolactin content: Relationship to number of hypothalamic dopamine neurons, Brain Res. 358:16–26.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, H. A., and File, S. E., 1989, Caffeine-induced anxiogenesis: The role of adenosine, benzodiazepine and noradrenergic receptors, Pharmacol. Biochem. Behav. 32:181–186.

    Article  PubMed  CAS  Google Scholar 

  • Balster, R. L., 1988, Pharmacological effects of cocaine relevant to its abuse, NIDA Res. Mongr. 88:1–13.

    CAS  Google Scholar 

  • Bayless, T. M., and Harris, M. L., 1990, Inflammatory bowel disease and irritable bowel syndrome, Med. Clin. North Am. 74:21–28.

    PubMed  CAS  Google Scholar 

  • Bell, D. S., 1965, Comparison of amphetamine psychosis and schizophrenia, Br. J. Psychiatry 3:701–707.

    Article  Google Scholar 

  • Berkowitz, B. A., Tarver, J. H., and Spector, S., 1970, Release of norepinephrine in the central nervous system by theophylline and caffeine, Eur. J. Pharmacol. 10:64–71.

    Article  PubMed  CAS  Google Scholar 

  • Betlach, C. J., and Tozer, T. N., 1980, Biodistribution of theophylline. Genetic variation in inbred mice, Drug Metab. Disp. 8:268–273.

    CAS  Google Scholar 

  • Boehme, R. E., and Ciaranello, R. D., 1981, Dopamine receptor binding in inbred mice: Strain differences in mesolimbic and nigrostriatal dopamine binding sites, Proc. Natl. Acad. Sci. U.S.A. 78:3255–3259.

    Article  PubMed  CAS  Google Scholar 

  • Bosy, T. Z., and Ruth, J. A., 1989, Differential inhibition of synaptosomal accumulation of [3H]monoamines by cocaine, tropacocaine and amphetamine in four inbred strains of mice, Pharmacol. Biochem. Behav. 34:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Bouchard, C., 1989, Genetic factors in obesity, Med. Clin. North Am. 73:67–81.

    PubMed  CAS  Google Scholar 

  • Bray, G. A., 1989, McCollum Award Lecture. Genetic and hypothalamnic mechanisms for obesity-finding the needle in the haystack, Am. J. Clin. Nutr. 50:891–902.

    PubMed  CAS  Google Scholar 

  • Broun, W. A., Corriveau, D. P., and Ebert, M. H., 1978, Acute psychologic and neuroendocrine effects of dextroamphetamine and methylphenidate, Psychopharmacology 58:189–195.

    Article  Google Scholar 

  • Bruce, M. S., and Lader, M., 1989, Caffeine abstention in the management of anxiety disorders, Psychol. Med. 19:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Caccia, S., Cecchetti, G., Garattini, S., and Jori, A., 1973, Interactions of amphetamine with cerebral dopaminergic neurones in two strains of mice that show different temperature responses to this drug, Br. J. Pharmacol. 49:400–406.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, C. W., Kuczenski, R., and Segal, D. S., 1989, Reserpine enhances amphetamine stereotypies without increasing amphetamine-induced changes in striatal dialysate dopamine, Brain Res. 505:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Carney, J. M., Cheng, M.-S., Cao, W., and Seale, T. W., 1991, Issues surrounding the assessment of the genetic determinants of drugs as reinforcing stimuli, J. Addict. Dis. 10:163–177.

    Article  PubMed  CAS  Google Scholar 

  • Carney, J. M., Seale, T. W., Logan, L., and McMaster, S. B., 1985, Sensitivity of inbred mice to methylxanthines is not determined by plasma xanthine concentration, Neurosci. Lett. 56:27–31.

    Article  PubMed  CAS  Google Scholar 

  • Chait, L. D., Uhlenhuth, E. H., and Johanson, C. E., 1986, The discriminative stimulus and subjective effects of phenylpropanolamine, mazindol and d-amphetamine in humans, Pharmacol. Biochem. Behav. 24:1665–1672.

    Article  PubMed  CAS  Google Scholar 

  • Chance, M. R. A., 1947, Factors influencing the toxicity of sympathomimetic amines to solitary mice, J. Pharmacol. Exp. Ther. 89:289–296.

    PubMed  CAS  Google Scholar 

  • Cho, A. K., 1990, Ice: A new dosage form of an old drug, Science 249:631–634.

    Article  PubMed  CAS  Google Scholar 

  • Cho, A. K., and Wright, J., 1978, Pathways of metabolism of amphetamine and related compounds, Life Sci. 22:363–371.

    Article  PubMed  CAS  Google Scholar 

  • Choi, O. H., Shamim, M. T., Padgett, W. L., and Daly, J. W., 1988, Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors, Life Sci. 43:387–398.

    Article  PubMed  CAS  Google Scholar 

  • Ciaranello, R. C., and Boehme, R., 1982, Genetic regulation of neurotransmitter enzymes and receptors: relationship to inheritance of psychiatric disorders, Behav. Genet. 12:11–35.

    Article  PubMed  CAS  Google Scholar 

  • Colle, L., and Wise, R. A., 1988, Concurrent facilitory and inhibitory effects of amphetamine on stimulation-induced eating, Brain Res. 459:356–360.

    Article  PubMed  CAS  Google Scholar 

  • Cone, E. J., Kumor, K., Thompson, L. K., and Sherer, M., 1988. Correlation of saliva cocaine levels with plasma levels and with pharmacological effects after intravenous cocaine administration in human subjects, J. Anal. Toxicol. 12:200–206.

    Article  PubMed  CAS  Google Scholar 

  • Crabbe, J. C., Jarvik, L. F., Liston, E. H., and Jenden, D. J., 1983, Behavioral responses to amphetamines in identical twins, Acta Genet. Med. Gemellol. 32:139–149.

    PubMed  CAS  Google Scholar 

  • Craig, A. L., and Kupferberg, H. J., 1972, Hyperthermia in d-amphetamine toxicity in aggregated mice of different strains, J. Pharmacol. Exp. Ther. 180:616–624.

    PubMed  CAS  Google Scholar 

  • Cregler, L. L., and Mark, H., 1986, Medical complications of cocaine abuse, N. Engl. J. Med. 315:1495–1500.

    Article  PubMed  CAS  Google Scholar 

  • de Fiebre, C. M., Ruth, J. A., and Collins, A. C., 1989, Differential sensitivity of long-sleep and short-sleep mice to high doses of cocaine, Pharmacol. Biochem. Behav. 34:887–893.

    Article  PubMed  Google Scholar 

  • DeFries, J. C., Wilson, J. R., Erwin, V. G., and Petersen, D. R., 1989, LS × SS recombinant inbred strains of mice: Initial characterization, Alcohol Clin. Exp. Res. 13:196–200.

    Article  PubMed  CAS  Google Scholar 

  • Deminiere, J. M., Piazza, P. V., Le Moal, M., and Simon, H., 1989, Experimental approach to individual vulnerability to psychostimulant addiction, Neurosci. Biobehav. Rev. 13:141–147.

    Article  PubMed  CAS  Google Scholar 

  • Deneau, G., Yanagita, T., and Severs, M. H., 1969, Self-administration of psychoactive substances in the monkey: A measure of psychological dependence, Psychopharmacology 16:30–48.

    Article  CAS  Google Scholar 

  • DeWit, H., and Wise, R. A., 1977, Blockade of cocaine reinforcement in rats with the dopamine receptor blocker, pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine, Can. J. Psychol. 31:195–203.

    Article  CAS  Google Scholar 

  • DeWit, H., Uhlenhuth, E. H., and Johanson, C. E., 1986, Individual differences in the reinforcing and subjective effects of amphetamine and diazepam, Drug Alcohol Depend. 16:341–360.

    Article  CAS  Google Scholar 

  • Dobmeyer, D. J., Stine, R. A., Leier, C. V., Greenberg, R., and Schad, S. F., 1983, The arrythmogenic effects of caffeine in human beings, N. Engl. J. Med. 308:814–816.

    Article  PubMed  CAS  Google Scholar 

  • Dolfini, E., Garattini, S., and Valzelli, L., 1969a, Differential sensitivity to amphetamine of three strains of mice, Eur. J. Pharmacol. 7:220–233.

    Article  CAS  Google Scholar 

  • Dolfini, E., Garatiini, S., and Valzelli, L., 1969b, Activity of (+)amphetamine at different environmental temperatures in three strains of mice, J. Pharm. Pharmacol. 21:871–872.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly, M., Rapoport, J. L., Potter, W. Z., Oliver, J., Keysor, C. S. and Murphey, D. L., 1989, Fenfluramine and dextroamphetamine treatment of childhood hyperactivity. Clinical and biochemical findings, Arch. Gen. Psychiatry 46:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Dudek, B. C., and Fanelli, R. J., 1980, Effects of gamma-butyrolactone, amphetamine, and haloperidol in mice differing in sensitivity to alcohol, Psychopharmacology 69:89–97.

    Article  Google Scholar 

  • El-Refai, M. F., and Chan, T. M., 1986, Possible involvement of a hypothalamic dopaminergic receptor in development of genetic obesity in mice, Biochem. Biophys. Acta 880:16–25.

    Article  PubMed  CAS  Google Scholar 

  • Fink, J. S., and Reis, D. J., 1981, Genetic variation in midbrain dopamine cell number: Parallel differences in responses to dopamine agonists and in naturalistic behaviors mediated by central dopaminergic systems, Brain Res. 222:335–349.

    Article  PubMed  CAS  Google Scholar 

  • Fink, J. S., Swerdloff, A., and Reis, D. J., 1982, Genetic control of dopamine receptors in mouse caudate nucleus: Relationship of cataleptic response to neuroleptic drugs, Neurosci. Lett. 32:301–306.

    Article  PubMed  CAS  Google Scholar 

  • Finn, I. B., and Holtzman, S. G., 1987, Pharmacological specificity of tolerance to caffeine-induced stimulation of locomotor activity, Psychopharmacology 93:428–434.

    Article  PubMed  CAS  Google Scholar 

  • Fischman, M. W., 1987, Cocaine and the amphetamines, in: Psychopharmacology: The Third Generation of Progress (H. Y. Meltzer, ed.), Raven Press, New York, pp. 1543–1553.

    Google Scholar 

  • Frantz, D. N., 1985, Central nervous system stimulants, in: The Pharmacological Basis of Therapeutics, 7th ed. (A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad, eds.), Macmillan, New York, pp. 582–588.

    Google Scholar 

  • Freed, W. J., Crump, S., and Jeste, D. V., 1984, Genetic effects of PCP-induced stimulation in recombinant inbred strains of mice, Pharmacol. Biochem. Behav. 21:159–162.

    Article  PubMed  CAS  Google Scholar 

  • Garfield, J. M., and Gugino, L., 1987, Central effects of local anesthetics, in: Local Anesthetics (G. R. Strichartz, ed.), Springer-Verlag, New York, pp. 253–284.

    Chapter  Google Scholar 

  • Gawin, F. H., and Ellinwood, E. H., Jr., 1988, Cocaine and other stimulants. Actions, abuse and treatment, N. Engl. J. Med. 318:1173–1182.

    Article  PubMed  CAS  Google Scholar 

  • George, F. R., 1989, Cocaine produces low dose locomotor depressant effects in mice, Psychopharmacology 99:147–150.

    Article  PubMed  CAS  Google Scholar 

  • George, F. R., 1991, Is there a common genetic basis for reinforcement from alcohol and other drugs? J. Addict. Dis. 10:127–139.

    Article  PubMed  CAS  Google Scholar 

  • George, F. R., and Goldberg, S. R., 1988, Genetic differences in response to cocaine, NIDA Res. Mongr. 88:239–249.

    CAS  Google Scholar 

  • George, F. R., and Goldberg, S. R., 1989, Genetic approaches to the analysis of addiction processes, Trends Pharmacol. Sci. 10:78–83.

    Article  PubMed  CAS  Google Scholar 

  • George, F. R., and Ritz, M. C., 1990, Cocaine produces locomotor stimulation in SS but not in LS mice: Relationship to dopaminergic function, Psychopharmacology 101:18–22.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, R. M., 1976, Caffeine as a drug of abuse, in: Recent Advances in Alcohol and Drug Problems, Volume 3 (R. J. Gibbins, Y. Israel, H. Kalant, R. E. Popham, W. Schmidt, and R. G. Smart, eds.), John Wiley & Sons, New York, pp. 49–176.

    Google Scholar 

  • Gilbert, R. M., 1984, Caffeine consumption, in: The Methylxanthine Beverages and Foods: Chemistry, Consumption and Health Effects (G. A. Spiller, ed.), Alan R. Liss, New York, pp. 185–213.

    Google Scholar 

  • Glick, S. D., and Hinds, P. A., 1985, Differences in amphetamine and morphine sensitivity in lateralized rats: Locomotor activity and drug self-administration, Eur. J. Pharmacol. 118:239–244.

    Article  PubMed  CAS  Google Scholar 

  • Gold, L. H., Geyer, M. A., and Koob, G. F., 1989, Neurochemical mechanisms involved in behavioral effects of amphetamine and related designer drugs, NIDA Res. Mongr. 94:101–126.

    CAS  Google Scholar 

  • Goldstein, A., and Kaizer, S., 1969, Psychotropic effects of caffeine in man. III. A questionnaire survey of coffee drinking and its effects in a group of housewives, Clin. Pharmacol. Ther. 10:477–488.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Warren, R., and Kaizer, S., 1965a, Psychotropic effects of caffeine in man. I. Individual differences in sensitivity to caffeine-induced wakefulness, J. Pharmacol. Exp. Ther. 149:156–159.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Kaizer, S., and Warren, R., 1965b, Psychotropic effects of caffeine in man. II. Alertness, psychomotor coordination, and mood, J. Pharmacol. Exp. Ther. 150:146–151.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Kaizer, S., and Whitby, O., 1969, Psychotropic effects of caffeine in man. IV. Quantitative and qualitative differences associated with habituation to coffee, Clin. Pharmacol. 10:489–497.

    CAS  Google Scholar 

  • Gonzalez, F. A., and Goldbert, S. R., 1977, Effects of cocaine and d-amphetamine on behavior maintained under various schedules of food presentation in squirrel monkeys, J. Pharmacol. Exp. Ther. 201:33–43.

    PubMed  CAS  Google Scholar 

  • Griffiths, R. R., and Woodson, P. P., 1988a, Reinforcing properties of caffeine: Studies in humans and laboratory animals, Pharmacol. Biochem. Behav. 29:419–427.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, R. R., and Woodson, P. P., 1988b, Reinforcing effects of caffeine in humans, J. Pharmacol. Exp. Ther. 246:21–29.

    PubMed  CAS  Google Scholar 

  • Griffiths, R. R., and Woodson, P. P., 1988c, Caffeine physical dependence: A review of human and laboratory animal studies, Psychopharmacology 94:437–451.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Hirabayashi, ML, and Tadokoro, S., 1987, Strain differences to reverse tolerance to methamphetamine and changes in catecholaminergic neurons in mice, Jpn. J. Pharmacol. 44:259–267.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, T. G., Zigmond, M. J., and Stricker, E. M., 1977, Effects of dopaminergic agonists and antagonists on feeding in intact and 6-hydroxydopamine-treated rats, J. Pharmacol. Exp. Ther. 201:386–399.

    PubMed  CAS  Google Scholar 

  • Hirabayashi, M., Iwai, F., Iizuka, M., Mesaki, T., Alam, M. R., and Tadokoro, S., 1979, Individual differences in the accelerating effect of methamphetamine, d-amphetamine, and morphine on ambulatory activity in mice, Nippon Yakurigaku Zasshi 75:683–693.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka, Y., Rockhold, R. W., Kirchner, K., Hoskins, B., and Ho, I. K., 1989, Differential sensitivity to cocaine in spontaneously hypertensive and Wistar-Kyoto rats, Life Sci. 45:223–232.

    Article  PubMed  Google Scholar 

  • James, J. E., and Crosbie, J., 1987, Somatic and psychological health implications of heavy caffeine use, Br. J. Addict. 82:503–509.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, D. S., and Risch, C., 1979, Amphetamine psychosis and psychotic symptoms, Psychopharmacology 65:73–77.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis, M. F., and Williams, M., 1988, Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice, Pharmacol. Biochem. Behav. 30:707–714.

    Article  PubMed  CAS  Google Scholar 

  • Jeste, D. V., Stoff, D. M., Rawlings, R., and Wyatt, R. J., 1984, Pharmacogenetics of phenylethylamine: Determination of heritability and genetic transmission of locomotor effects in recombinant inbred strains of mice, Psychopharmacology 84:537–540.

    Article  PubMed  CAS  Google Scholar 

  • Johanson, C. E., and Fischman, M., 1989, The pharmacology of cocaine related to its abuse, Pharmacol. Rev. 41:3–52.

    PubMed  CAS  Google Scholar 

  • Jori, A., and Caccia, S., 1975, Further studies on brain concentrations of amphetamine and its metabolites in strains of mice showing different sensitivity to pharmacological effects of amphetamine, J. Pharm. Pharmacol. 27:886–888.

    Article  PubMed  CAS  Google Scholar 

  • Jori, A., and Rutczynski, M., 1978, A genetic analysis of the hyperthermic response to d-amphetamine in two inbred strains of mice, Psychopharmacology 59:199–203.

    Article  PubMed  CAS  Google Scholar 

  • Kalow, W., 1985, Variability of caffeine metabolism in humans, Arzneim. Forsch. 35:319–324.

    CAS  Google Scholar 

  • Kalow, W., 1987, Genetic studies in the human hepatic cytochrome P-450 system, Eur. J. Clin. Pharmacol. 31:633–641.

    Article  PubMed  CAS  Google Scholar 

  • Karacan, I., Thornby, J. I., Anch, A. M., Booth, G. H., Williams, R. L., and Salis, P. H., 1976, Dose-related sleep disturbances induced by coffee and caffeine, Clin. Pharmacol. Ther. 20:682–689.

    PubMed  CAS  Google Scholar 

  • Kitahama, K., and Valatx, J.-L., 1979a, Strain differences in amphetamine sensitivity in mice. I. A diallel analysis of an open field activity, Psychopharmacology 66:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Kitahama, K., and Valatx, J.-L., 1979b, Strain differences in amphetamine sensitivity in mice. II. Overcompensation of paradoxical sleep after deprivation in two C57 strains, Psychopharmacology 66:291–295.

    Article  PubMed  CAS  Google Scholar 

  • Koob, G. F., and Bloom, F. E., 1988, Cellular and molecular mechanisms of drug dependence, Science 242:715–723.

    Article  PubMed  CAS  Google Scholar 

  • Kosten, T. R., and Kleber, H. D., 1988, Rapid death during cocaine abuse: A variant of the neuroleptic malignant syndrome? Am. J. Drug Alcohol Abuse 14:335–346.

    Article  PubMed  CAS  Google Scholar 

  • Kumor, K. M., Sherer, M. A., Gomez, J., Cone, E., and Jaffe, J. H., 1989, Subjective response during continuous infusion of cocaine, Pharmacol. Biochem. Behav. 33:443–452.

    Article  PubMed  CAS  Google Scholar 

  • Kuprys, R., and Oltmans, G. A., 1982, Amphetamine anorexia and hypothalamic catecholamines in genetically obese mice (ob ob), Pharmacol. Biochem. Behav. 17:271–282.

    Article  PubMed  CAS  Google Scholar 

  • Lalley, P. A., Davison, M. T., Graves, J. A., O’Brien, S. J., Womack, J. E., Roderick, T. H., Greau-Goldberg, N., Hillyard, A. L., Doolittle, D. R., and Rogers, J. A., 1989, Report on the committee on comparative mapping, Cytogenet. Cell Genet. 51:503–532.

    Article  PubMed  CAS  Google Scholar 

  • Levenson, J. L., 1985, Neuroleptic malignant syndrome, Am. J. Psychiatry 142:1137–1145.

    PubMed  CAS  Google Scholar 

  • Levy, M., and Zylber-Katz, E., 1983, Caffeine metabolism and coffee-attributed sleep disturbances, Clin. Pharmacol. Ther. 33:770–775.

    Article  PubMed  CAS  Google Scholar 

  • Logan, L., Seale, T. W., and Carney, J. M., 1986, Inherent differences in response to methylxanthines among inbred mouse strains, Pharmacol. Biochem. Behav. 24:1281–1286.

    Article  PubMed  CAS  Google Scholar 

  • Logan, L. Seale, T. W., and Carney, J. M., 1988, Effects of chronic amphetamine in BALB/cBy mice, a strain that is not stimulated by acute administration of amphetamine, Pharmacol. Biochem. Behav. 31:675–682.

    Article  PubMed  CAS  Google Scholar 

  • Logan, L., Carney, J. M., Holloway, F. A., and Seale, T. W., 1989, Effects of caffeine, cocaine and their combination on fixed-interval behavior in rats, Pharmacol. Biochem. Behav. 33:99–104.

    Article  PubMed  CAS  Google Scholar 

  • London, E. D., Wilkerson, G., Goldberg, S. R., and Risner, M. E., 1986, Effects of l-cocaine on local cerebral glucose utilization in the rat, Neurosci. Lett. 68:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Manuck, S. B., Kasprowicz, A. L., and Muldoon, M. F., 1990, Behaviorally-evoked cardiovascular reactivity and hypertension: Conceptual issues and potential associations, Ann. Behav. Med. 12:17–29.

    Article  Google Scholar 

  • Marangos, P. J., Paul, S. M., Goodwin, F. K., Syapin, P., and Skolnick, P., 1981, The benzodiazepines and inosine antagonize caffeine-induced seizures, Psychopharmacology 72:269–272.

    Article  PubMed  CAS  Google Scholar 

  • McBride, M. C., 1988, An individual double-blind crossover trial for assessing methylphenidate response in children with attention deficit disorder, J. Pediatr. 113:137–145.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, R., Chiueh, C. C., and Kopin, I. J., 1980, Differential behavioral responses of spontaneously hypertensive (SHR) and normotensive (WKY) rats to d-amphetamine, Pharmacol. Biochem. Behav. 12:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Meier, G. W., Hatfield, J. L., and Foshee, D. P., 1963, Genetic and behavioral aspects of pharmacologically induced arousal, Psychopharmacologia 4:81–90.

    Article  PubMed  CAS  Google Scholar 

  • Meliska, C. J., and Brown, R. E., 1982, Effects of caffeine on schedule-controlled responding in the rat, Pharmacol. Biochem. Behav. 16:745–750.

    Article  PubMed  CAS  Google Scholar 

  • Michaluk, J., Antkiewicz-Michaluk, L., Rokosz-Pelc, A., Sansone, M., Oliverio, A., and Vetulani, J., 1982, Dopamine receptors in the striatum and limbic system of various strains of mice: Relation to differences in response to apomorphine, Pharmacol. Biochem. Behav. 17:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • Miczek, K. A., and Tidey, J. W., 1989, Amphetamines: Aggressive and social behavior, NIDA Res. Monogr. 94:68–100.

    PubMed  CAS  Google Scholar 

  • Miller, N. S., Millman, R. B., and Gold, M. S., 1989, Amphetamines: Pharmacology, abuse and addiction, Adv. Alcohol Subst. Abuse 8:53–69.

    Article  PubMed  Google Scholar 

  • Moisset, B., 1977, Genetic analysis of the behavioral response to d-amphetamine in mice, Psychopharmacology 53:269–276.

    Article  PubMed  CAS  Google Scholar 

  • Moisset, B., and Welch, B. L., 1973, Effects of d-amphetamine upon open field behavior in two inbred strains of mice, Experientia 29:625–626.

    Article  PubMed  CAS  Google Scholar 

  • Muntaner, C., Kumor, K. M., Nagoshi, C., and Jaffe, J. H., 1989, Intravenous cocaine infusions in humans: Dose responsivity and correlation of cardiovascular vs. subjective effects, Pharmacol. Biochem. Behav. 34:697–703.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M. M., Musty, R. E., and Hendley, E. D., 1982, Attention of hyperactivity in the spontaneously hypertensive rat by amphetamine, Behav. Neurol. Biol. 34:42–54.

    Article  CAS  Google Scholar 

  • Nehlig, A., Lucignani, G., Kadekaro, M., Porrino, L. J., and Sokoloff, L., 1982, Effects of acute administration of caffeine on local cerebral glucose utilization in the rat, Eur. J. Pharmacol. 101:91–100.

    Article  Google Scholar 

  • Nehlig, A., Pereira de Vasconcelos, A., Collignon, A., and Boyet, S., 1988, Comparative effects of caffeine and l-phenylisopropyladenosine on local cerebral glucose utilization in the rat, Eur. J. Pharmacol. 157:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger, J. L., Gershon, E. S., Simmons, S., Ebert, M., Kessler, L. R., Dibble, E. D., Jimerson, S. S., Broun, G. M., Gold, P., Jimerson, D. C., Guroff, J., and Storch, F. I., 1982, Behavioral, biochemical and neuroendocrine response to amphetamine in normal twins, and “well-state” bipolar patients, Psychoneuroendocrinology 7:163–176.

    Article  PubMed  CAS  Google Scholar 

  • Oliverio, A., Eleftheriou, B. E., and Bailey, D. W., 1973, Exploratory activity: Genetic analysis of its modification by scopolamine and amphetamine, Physiol. Behav. 10:893–899.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, N. L., 1984, Multivariate analysis of familial and non-familial influences for commonality in drug use, Drug Alcohol Depend. 14:67–74.

    Article  PubMed  CAS  Google Scholar 

  • Petit, H. O., and Justice, J. B., Jr., 1989, Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis, Pharmacol. Biochem. Behav. 34:899–904.

    Article  Google Scholar 

  • Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R., 1979, Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex, Can. J. Physiol. Pharmacol. 57:1289–1312.

    Article  PubMed  CAS  Google Scholar 

  • Piazza, P. V., Deminiere, J.-M., LeMoal, M., and Simon, H., 1989, Factors that predict individual vulnerability to amphetamine self-administration, Science 245:1511–1513.

    Article  PubMed  CAS  Google Scholar 

  • Pickering, T. G., and Gerin, W., 1990, Area review: Blood pressure reactivity, Ann. Behav. Med. 12:3–16.

    Article  Google Scholar 

  • Pitts, D. K., and Marwah, J., 1988, Cocaine and central monoaminergic neurotransmission: A review of electrophysiological studies and comparison to amphetamine and antidepressants, Life Sci. 42:949–968.

    Article  PubMed  CAS  Google Scholar 

  • Porrino, L. J., and Kornetsky, C., 1988, The effects of cocaine on local cerebral metabolic activity, NIDA Res. Monogr. 88:92–106.

    PubMed  CAS  Google Scholar 

  • Post, R. M., Weiss, S. R. B., Pert, A., and Uhde, T. W., 1987, Chronic cocaine administration: Sensitization and kindling effects, in: Cocaine: Clinical and Biobehavioral Aspects (S. Fisher, A. Raskin, and E. H. Uhlenhuth, eds.), Oxford University Press, New York, pp. 109–173.

    Google Scholar 

  • Proctor, W. R., and Dunwiddie, T. V., 1984, Behavioral sensitivity to purinergic drugs parallels ethanol sensitivity in selectively bred mice, Science 224:519–521.

    Article  PubMed  CAS  Google Scholar 

  • Pylatuck, K. L., and McNeill, J. H., 1976, The effects of certain drugs on the uptake and release of [3H]noradrenaline in rat whole brain homogenates, Can. J. Physiol. Pharmacol. 54:457–469.

    Article  Google Scholar 

  • Randrup, A., and Munkvad, I., 1970, Biochemical, anatomical and psychological investigations of stereotyped behavior induced by amphetamines, in: Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), Raven Press, New York, pp. 695–714.

    Google Scholar 

  • Rapport, M. D., and DePaul, G. J., 1986, Hyperactivity and methylphenidate: Rate-dependent effects on attention, Int. Clin. Psychopharmacol. 1:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M. E., Meisler, B. E., Sershen, H., and Lajtha, A., 1986, Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior, Biochem. Pharmacol. 35:1123–1129.

    Article  PubMed  CAS  Google Scholar 

  • Ritz, M. C., Lamb, R. J., Goldberg, S. R., and Kuhar, M. J., 1987, Cocaine receptors on dopamine transporters are related to self-administration of cocaine, Science 237:1219–1223.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D., Wade, D., Workman, R., Woosley, R. L., and Oates, J. A., 1981, Tolerance to the humoral and hemodynamic effects of caffeine in man, J. Clin. Invest. 67:111–117.

    Article  Google Scholar 

  • Ross, S. B., Renyi, A. L., and Brunfelter, B., 1968, Cocaine sensitive uptake of sympathomimetic amines in mouse tissue, J. Pharm. Pharmacol. 20:283–288.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. A., Judd, A. B., Pickel, V. M., Joh, T. H., and Reis, D. J., 1976, Strain dependent variations in number of midbrain dopaminergic neurons, Nature 264:654–656.

    Article  PubMed  CAS  Google Scholar 

  • Ruth, J. A., Ullman, E. A., and Collins, A. C., 1988, An analysis of cocaine effects on locomotor activities and heart rate in four inbred strains of mice, Pharmacol. Biochem. Behav. 29:157–162.

    Article  PubMed  CAS  Google Scholar 

  • Sannerud, C. A., Brady, J. V., and Griffiths, R. R., 1989, Self-injection in baboons of amphetamines and related designer drugs, NIDA Res. Monogr. 94:30–42.

    PubMed  CAS  Google Scholar 

  • Satinder, K., and Sterling, J. W., 1983, Differential effects of pre-and/or post-natal d-amphetamine on avoidance response in genetically selected lines of rats, Neurobehav. Toxicol. Teratol. 5:315–320.

    PubMed  CAS  Google Scholar 

  • Schenk, S., Hunt, T., Malovechko, R., Robertson, A., and Zamit, Z., 1986, Differential effects of isolation housing on the conditioned place preference produced by cocaine and amphetamine, Pharmacol. Biochem. Behav. 24:1793–1796.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, S., Lacelle, G., Gorman, K., and Amit, Z., 1987, Cocaine self-administration in rats influenced by environmental conditions: Implications for the etiology of drug abuse, Neurosci. Lett. 81:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Schlatter, J., and Battig, K., 1979, Differential effects of nicotine and amphetamine on locomotor activity and maze exploration in two rat lines, Psychopharmacology 64:155–161.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., and Carney, J. M., 1991a, Genetic determinants of susceptibility to the rewarding and other behavioral actions of cocaine, J. Addict. Dis. 10:141–162.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., and Carney, J. M., 1991b, Inherent differences in nonfood-induced oral self-administration of cocaine between C57BL/6 and DBA/2 inbred mice, Pharmacol. Biochem. Behav. (in review).

    Google Scholar 

  • Seale, T. W., Johnson, P., Carney, J. M., and Rennert, O. M., 1984a, Interstrain variation in acute toxic response to caffeine among inbred mice, Pharmacol. Biochem. Behav. 20:567–573.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., McLanahan, K., Johnson, P., Carney, J. M., and Rennert, O. M., 1984b, Systematic comparison of apomorphine-induced behavioral changes in two mouse strains with inherited differences in brain dopamine receptors, Pharmacol. Biochem. Behav. 21:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Johnson, P., Carney, J. M., Roderick, T., and Rennert, O. M., 1985a, A single gene difference determines susceptibility to caffeine-induced lethality in SWR and CBA inbred mice, Pharmacol. Biochem. Behav. 23:275–278.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Carney, J. M., Johnson, P., and Rennert, O. M., 1985b, Inheritance of amphetamine-induced thermoregulatory responses in inbred mice, Pharmacol. Biochem. Behav. 23:373–377.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Roderick, T., Logan, L., Rennert, O. M., and Carney, J. M., 1986a, Complex genetic determinants of susceptibility to methylxanthine-induced changes in locomotor activity, Pharmacol. Biochem. Behav. 24:1333–1341.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Abla, K. A., Cao, W., Parker, K. M., Rennert, O. M., and Carney, J. M., 1986b, Inherent hyporesponsiveness to methylxanthine-induced behavioral changes associated with supersensitivity to 5′-N-ethylcarboxamidoadenosine, Pharmacol. Biochem. Behav. 25:1271–1278.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Carney, J. M., Flux, M., Rennert, O. M., and Skolnick, P., 1987a, Coincident susceptibility to seizures induced by caffeine and the benzodiazepine inverse agonist, DMCM, in SWR and CBA inbred mice, Pharmacol. Biochem. Behav. 26:381–387.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Abla, K. A., Roderick, T. H., Rennert, O. M., and Carney, J. M., 1987b, Different genes specify hyporesponsiveness to seizures induced by caffeine and the benzodiazepine inverse agonist, DMCM, Pharmacol. Biochem. Behav. 27:451–456.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Abla, K. A., Shamim, M. T., Carney, J. M., and Daly, J. W., 1988, 3,7-Dimethyl-1-propargylxanthine: A potent and selective in vivo antagonist of adenosine analogs, Life Sci. 43:1671–1684.

    Article  PubMed  CAS  Google Scholar 

  • Seale, T. W., Logan, L., Abla, K., Roderick, T. H., Parker, K. M., and Carney, J. M., 1991, Sensitivity to locomotor activity stimulation by cocaine is an inherited trait controlled by more than a single gene in inbred mice, Pharmacol. Biochem. Behav. (in review).

    Google Scholar 

  • Sharkey, J., Ritz, M. C., Schendon, J., Hanson, R. C., and Kuhar, M. J., 1988a, Cocaine inhibits muscarinic cholinergic receptors in heart and brain, J. Pharmacol. Exp. Ther. 246:1048–1052.

    PubMed  CAS  Google Scholar 

  • Sharkey, J., Glen, K., Wolfe, S., and Kuhar, M. J., 1988b, Cocaine binding at sigma receptors, Eur. J. Pharmacol. 149:171–174.

    Article  PubMed  CAS  Google Scholar 

  • Sherer, M. A., Kumor, K. M., Cone, E. J., and Jaffe, J. H., 1988, Suspiciousness induced by four-hour intravenous infusions of cocaine, Arch. Gen. Psychiatry 45:673–677.

    Article  PubMed  CAS  Google Scholar 

  • Shuster, L., Yu, G., and Bates, A., 1977, Sensitization to cocaine stimulation in mice, Psychopharmacology 52:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Shuster, L., Garhart, C. A., Powers, J., Grumfeld, Y., and Kanel, G., 1988, Hepatotoxicity of cocaine, NIDA Res. Monogr. 88:250–275.

    PubMed  CAS  Google Scholar 

  • Smith, R. C., and Davis, J. M., 1977, Comparative effects of d-amphetamine, l-amphetamine and methyphenidate on mood in man, Psychopharmacology 53:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Smolen, A., and Marks, M. J., 1991, Genetic selections for nicotine and cocaine sensitivity in mice, J. Addict. Dis. 10:7–28.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H., 1985, Adenosine as a neuromodulator, Annu. Rev. Neurosci. 8:103–124.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W., 1981, Adenosine receptors and behavioral actions of methylxanthines, Proc. Natl. Acad. Sci. U.S.A. 78:3260–3264.

    Article  PubMed  CAS  Google Scholar 

  • Steigerwald, E. S., Rusiniak, K. E., Eckel, D. L., and O’Regan, M. H., 1989, Aversive conditioning properties of caffeine in rats, Pharmacol. Biochem. Behav. 31:579–584.

    Article  Google Scholar 

  • Stern, K. N., Chait, L. D., and Johanson, C. E., 1989, Reinforcing and subjective effects of caffeine in normal human volunteers, Psychopharmacology 98:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, R. D., and Wolraich, M. L., 1989, Stimulant medication therapy in the treatment of children with attention deficit hyperactivity disorder, Pediatr. Clin. North Am. 36:1183–1197.

    PubMed  CAS  Google Scholar 

  • Strichartz, G. R., and Ritchie, J. M., 1987, The action of local anesthetics on ion channels of excitable tissues, in: Local Anesthetics (G. R. Strichartz, ed.), Springer-Verlag, Berlin, pp. 21–52.

    Chapter  Google Scholar 

  • Thompson, M. L., Shuster, L., and Casey, E., 1984, Sex and strain differences in response to cocaine, Biochem. Pharmacol. 33:1299–1307.

    Article  PubMed  CAS  Google Scholar 

  • Uhde, T. W., Boulenger, J. P., Jimerson, D. C., and Post, R. M., 1984, Caffeine and behavior: Relation to psychopathology and underlying mechanisms, Psychopharmacol. Bull. 20:426–430.

    PubMed  CAS  Google Scholar 

  • Vadasz, C., Baker, H., Joh, T. H., Lajtha, A., and Reis, D. J., 1982, The inheritance and genetic correlation of tyrosine hydroxylase activities in the substantia nigra and corpus striatum in the C3B recombinant inbred mouse strains, Brain Res. 234:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Van Dette, J. M., and Cornish, L. A., 1989, Medical complications of illicit cocaine use, Clin. Pharmacy 8:401–411.

    Google Scholar 

  • Vetulani, J., Sansone, M., and Oliverio, A., 1982, Analysis of the difference in the behavioral effects of apomorphine in C57BL/6 and DBA/2 mice, Pharmacol. Biochem. Behav. 17:967–971.

    Article  PubMed  CAS  Google Scholar 

  • Vree, T. B., and van Rossom, J. M., 1970, Kinetics of metabolism and excretion of amphetamines in man, in: Amphetamines and Related Compounds (E. Costa and S. Garattini, eds.), Raven Press, New York, pp. 165–190.

    Google Scholar 

  • Watanabe, H. K., Hoskins, B., and Ho, I. K., 1987, Sensitivity differences to hepatotoxicity of cocaine in spontaneously hypertensive and Wistar-Kyoto rats, Alcohol Drug Res. 7:363–370.

    PubMed  CAS  Google Scholar 

  • Weaver, L. C., and Kerley, L. T., 1962, Strain differences in response of mice to d-amphetamine, J. Pharmacol. Exp. Ther. 135:240–244.

    PubMed  CAS  Google Scholar 

  • Wechsler, L. R., Savaki, H. E., and Sokoloff, S. 1979, Effects of d-amphetamine and l-amphetamine on local cerebral glucose utilization in the conscious rat, J. Neurochem. 32:15–22.

    Article  PubMed  CAS  Google Scholar 

  • White, N. M., 1989, Reward or reinforcement: What’s the difference? Neurosci. Biobehav. Rev. 13:1181–1186.

    Google Scholar 

  • Wilkerson, G., and London, E. D., 1989, Effects of methylenedioxymethamphetamine on local cerebral glucose utilization in the rat, Neuropharmacology 28:1129–1138.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M., 1987, Purine receptors in mammalian tissues: Pharmacology and physiological significance, Annu. Rev. Pharmacol. Toxicol. 27:315–345.

    Article  PubMed  CAS  Google Scholar 

  • Winger, G., Palmer, R. K., and Woods, J. H., 1989, Drug-reinforced responding: Rapid determination of dose-response function, Drug Alcohol Depend. 24:135–142.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R. A., 1984, Neural mechanisms of the reinforcing actions of cocaine, NIDA Res. Monogr. 50:15–33.

    PubMed  CAS  Google Scholar 

  • Wise, R. A., and Rompre, P. P., 1989, Brain dopamine and reward, Annu. Rev. Psychol. 40:191–225.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R. A., Fotuki, M., and Colle, L. M., 1989, Facilitation of feeding by nucleus accumbens amphetamine injections: Latency and speed measures, Pharmacol. Biochem. Behav. 32:769–772.

    Article  PubMed  CAS  Google Scholar 

  • Woods, J. H., Winger, G. D., and France, C. P., 1987, Reinforcing and discriminative stimulus effects of cocaine: Analysis of pharmacological mechanisms, in: Cocaine: Clinical and Biobehavioral Aspects (S. Fisher, A. Raskin, and E. H. Uhlenhuth, eds.), Oxford University Press, New York, pp. 21–65.

    Google Scholar 

  • Yasuhara, M., and Levy, G., 1988, Rapid development of functional tolerance to caffeine-induced seizures in rats, Proc. Soc. Exp. Biol. Med. 188:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Yen, T. T., and Acton, J. M., 1972, Locomotor activity of various types of genetically obese mice, Proc. Soc. Exp. Biol. Med. 140:647–650.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J. H., and Smith, C. B., 1977, Effects of cocaine and desmethylimipramine on the uptake, retention and metabolism of 3H-5-hydroxytryptamine in rat brain slices, Pharmacology 15:242–253.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seale, T.W. (1991). Genetic Differences in Response to Cocaine and Stimulant Drugs. In: Crabbe, J.C., Harris, R.A. (eds) The Genetic Basis of Alcohol and Drug Actions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2067-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2067-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2069-0

  • Online ISBN: 978-1-4899-2067-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics