Skip to main content

Hypophysiotropic Regulation of Stress-Induced ACTH Secretion

  • Chapter
Mechanisms of Physical and Emotional Stress

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 245))

Abstract

Actual and perceived deviations from the homeostatic state evoke numerous physiological adjustments, including activation of the hypothalamic-pituitary-adrenal axis (HPA). The primary endproducts of this cascade (adenohypophysial opioid and adrenocortical glucocorticoid secretion) result in mobilization of energy substrates, suppression of nonessential systems such as digestion and reproduction, inhibition of inflamatory responses, and alteration of pain and sensory perception (1, 2). An overview of the information flow through the HPA is presented in Fig. 1. Most stimuli which elicit ACTH secretion must first be encoded as neurochemical messages within the central nervous system, undergo processing and must then be transformed into a hypophysiotropic signal recognized by corticotropes within the adenohypophysis. By now, it is appreciated that regulation of ACTH secretion is mediated by multiple factors of hypothalamic, neurohypophysial and peripheral origins. Corticotropin releasing factor (CRF; 3,4), arginine vasopressin (AVP; 5,6) and epinephrine (EPI; 7,8) are secreted from nerve endings within the zona externa of the median eminence into the hypophysial-portal circulation. Other putative regulatory factors of hypothalamic origin include oxytocin (OT; 9,10) and angiotensin II (AII; 11, 12). In addition, circulating neurohypophysial AVP and OT, and catecholamines of sympathetic nervous system and adrenomedullary origins may participate in regulation of ACTH secretion under certain circumstances. Superimposed upon this regulatory network are the multiple actions of the glucocorticoids acting at both the pituitary and central nervous system levels to modulate basal and stimulus-induced secretion of ACTH (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Munck A, Guyre PM, Holbrook NJ 1984 Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Rev 5:25

    Article  CAS  Google Scholar 

  2. Yates FE, Marsh DJ, Maran JW 1980 The adrenal cortex. In: Mountcastle VB (ed) Medical Physiology, Vol 2, C.V. Mosby Co., St. Louis, MO, p. 1558

    Google Scholar 

  3. Vale W., Spies J, Rivier C, Rivier J 1981 Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394

    Article  PubMed  CAS  Google Scholar 

  4. Plotsky PM, Vale W 1984 Hemorrhage-induced secretion of corticotropin-releasing factor-like immunoreactivity into the rat hypophysial portal circulation and its inhibition by glucocorticoids. Endocrinology 114:164

    Article  PubMed  CAS  Google Scholar 

  5. Gillies GE, Lowry PJ 1982 Corticotropin-releasing hormone and its yasopressin component. In: Ganong WF, Martini L (eds) Frontiers in Neuroendocrinology, Vol 7, Raven Press, New York, p. 45

    Google Scholar 

  6. Rivier C, Vale W 1983 Interaction of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) on ACTH secretion in vivo. Endocrinology 113:939

    Article  PubMed  CAS  Google Scholar 

  7. Johnston CA, Gibbs DM, Negro-Villar A 1983 High concentrations of epinephrine derived from a central source and of 5-hydroxyindole-3-acetic acid in hypophysial portal plasma. Endocrinology 113:819

    Article  PubMed  CAS  Google Scholar 

  8. Giguere V, Labrie F 1983 Additive effects of epinephrine and corticotropin-releasing factor (CRF) on adrenocorticotropin release in rat anterior pituitary cells. Biochem Biophys Res Commun 110:456

    Article  PubMed  CAS  Google Scholar 

  9. Antoni FA, Holmes MC, Jones MT 1983 Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptide 4:411

    Article  CAS  Google Scholar 

  10. Gibbs DM 1984 High concentrations of oxytocin in hypophysial portal plasma. Endocrinology 114:1216

    Article  PubMed  CAS  Google Scholar 

  11. Rivier C, Vale W 1983 Effect of angiotensin II on ACTH release in vivo: role of corticotropin-releasing factor (CRF). Reg Pept 7:253

    Article  CAS  Google Scholar 

  12. Sobel D, Vagnucci A 1982 Angiotensin II mediated ACTH release in rat pituitary cell cultures. Life Sci 30:1281

    Article  PubMed  CAS  Google Scholar 

  13. Keller-Wood ME, Dallman MF 1984 Corticoid inhibition of ACTH secretion. Endocrine Rev 5:1

    Article  CAS  Google Scholar 

  14. Snyckers FD 1975 Transphenoidal selective anterior hypophysectomy in cats for microsurgical training. J Neurosurg 43:774

    Article  PubMed  CAS  Google Scholar 

  15. Fink G, Aiyer M, Chiappa S, Henderson S, Jamieson M et al 1983 Gonadotropin-releasing hormone release into hypophyseal portal blood and mechanism of action. In: McKerns KW, Pantic V (eds) Hormonally Active Brain Peptides, Structure and Function. Plenum Press, New York, p. 397

    Google Scholar 

  16. Plotsky PM, Bruhn TO, Vale W 1985 Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology 116:633

    Article  PubMed  CAS  Google Scholar 

  17. Plotsky PM, Bruhn TO, Ferguson A 1987 Evidence supporting a role for the subfornical organ in regulation of the hypothalamic-pituitary-adrenal axis in the rat. Am J Physiol, submitted

    Google Scholar 

  18. Vale W., Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C 1983 Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology 113:1121

    Article  PubMed  CAS  Google Scholar 

  19. Rivier C, Vale WW 1983 Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 305:325

    Article  PubMed  CAS  Google Scholar 

  20. Rivier J, Rivier C, Vale W 1984 Synthetic competitive antagonists of corticotropin releasing factor: Effect on ACTH secretion in the rat. Science 224:889

    Article  PubMed  CAS  Google Scholar 

  21. Linton EA, Tilders FJH, Hodgkinson S, Berkenbosch F, Vermes I, Lowry PJ 1985 Stress-induced secretion of adrenocorticotropin in rats is inhibited by administration of antisera to ovine corticotropin-releasing factor and vasopressin. Endocrinology 116:966

    Article  PubMed  CAS  Google Scholar 

  22. Nakane T, Audhya T, Kanie N, Hollander CS 1985 Evidence for a role of endogenous corticotropin-releasing factor in cold, ether, immobilization, and a traumatic stress. Proc Natl Acad Sci USA 82:1247

    Article  PubMed  CAS  Google Scholar 

  23. Dallman MF, Makara GB, Roberts JL, Levin N, Blum M 1985 Corticotrope response to removal of releasing factors and corticosteroids in vivo. Endocrinology 117:2190

    Article  PubMed  CAS  Google Scholar 

  24. Merchenthaler I, Vigh S, Petrusz P, Schally AV 1983 The paraventricular-infundibular corticotropin releasing factor (CRF)-pathway as revealed by immunocytochemistry in long-term hypophysectomized or adrenalectomized rats. Reg Pept 5:295

    Article  CAS  Google Scholar 

  25. Swanson LW, Sawchenko PE, Rivier J, Vale WW 1983 Organization of ovine corticotropin-releasing factor immnunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinol 36:165

    Article  CAS  Google Scholar 

  26. Plotsky PM, Otto S, Sapolsky RM 1986 Inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation by delayed glucocorticoid feedback. Endocrinology 119:1126

    Article  PubMed  CAS  Google Scholar 

  27. Bereiter DA, Zaid AM, Gann DS 1986 Effect of rate of hemorrhage on release of ACTH in cats. Am J Physiol 250:E76

    PubMed  CAS  Google Scholar 

  28. Plotsky PM, Bruhn TO, Vale W 1985 Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin-induced hypoglycemia. Endocrinology 117:323

    Article  PubMed  CAS  Google Scholar 

  29. Mezey E, Reisine TD, Brownstein MJ, Palkovits M, Axelrod J 1984 β-adrenergic mechanism of insulin-induced adrenocorticotropin release from the anterior pituitary. Science 226:1085

    Article  PubMed  CAS  Google Scholar 

  30. Jezova D, Kvetnansky R, Kovacs K, Oprsalova Z, Vigas M, Makara GB 1987 Insulin-induced hypoglycemia activates the release of adrenocorticotropin predominantly via central and propanolol insensitive mechanisms. Endocrinology 120:409

    Article  PubMed  CAS  Google Scholar 

  31. Gibbs DM 1985 Measurement of hypothalamic corticotropin-releasing factors in hypophyseal portal blood. Fed Proc 44:203

    PubMed  CAS  Google Scholar 

  32. Sawchenko PE, Swanson LW 1981 Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214:685

    Article  PubMed  CAS  Google Scholar 

  33. Sawchenko PE, Swanson LW 1982 The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275

    Article  Google Scholar 

  34. Sumal KK, Blessing WW, Joh TH, Reis DJ, Pickel VM 1983 Synaptic interactions of vagal afferents and catecholaminergic neurons in the rat nucleus solitarius. Brain Res 277:31

    Article  PubMed  CAS  Google Scholar 

  35. Hokfelt T, Fuxe K, Goldstein M, Johansson O 1974 Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235

    Article  CAS  Google Scholar 

  36. Sawchenko PE, Swanson R, Grzanna R, Howe PRC, Bloom SR, Polak JM 1985 Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular and supraoptic nuclei in the rat. J Comp Neurol 241:138

    Article  PubMed  CAS  Google Scholar 

  37. Lind RW, Swanson LW, Ganten D 1984 Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat. Brain Res 321:207

    Google Scholar 

  38. Swanson LW 1986 Organization of the mammalian neuroendocrine system. In: Bloom FE (ed) Handbook of Physiology, American Physiological Society, Washington DC, p. 317

    Google Scholar 

  39. Buckingham JC, Hodges JR 1979 Hypothalamic receptors influencing the secretion of corticotropin releasing hormone in the rat. J Physiol 290:421

    PubMed  CAS  Google Scholar 

  40. Hillhouse EW, Burden J, Jones MT 1975 The effect of various putative neurotransmitters on the release of corticotropin releasing hormone from the hypothalamus of the rat in vitro. I. The effect of acetylcholine and norepinephrine. Neuroendocrinol 17:1

    Article  CAS  Google Scholar 

  41. Weiner RI, Ganong WF 1978 Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiol Rev 58:905

    PubMed  CAS  Google Scholar 

  42. Plotsky PM, Otto S, Sutton S 1987 Neurotransmitter modulation of corticotropin releasing factor secretion into the hypophysial-portal circulation. Life Sci, submitted

    Google Scholar 

  43. Plotsky PM 1986 Opioid inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation of rats. Reg Pept 16:235

    Article  CAS  Google Scholar 

  44. Tuomisto J, Mannisto P 1985 Neurotransmitter regulation of anterior pituitary hormones. Pharmacol Rev 37:249

    PubMed  CAS  Google Scholar 

  45. Fehm HL, Voigt KH, Lang RE, Pfeiffer EF 1980 Effects of neurotransmitters on the release of corticotropin releasing hormone (CRH) by rat hypothalamic tissue in vitro. Exp Brain Res 39:229

    Article  PubMed  CAS  Google Scholar 

  46. Szafarczyk A, Alonso G, Ixart G, Malaval F, Assenmacher I 1985 Diurnal-stimulated and stress-induced ACTH release in rats is mediated by ventral noradrenergic bundle. Am J Physiol 249:E219

    PubMed  CAS  Google Scholar 

  47. Plotsky PM 1987 Facilitation of irCRF secretion into the hypophysial-portal circulation following activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology, submitted

    Google Scholar 

  48. Szafarczyk A, Malaval F Laurent A, Gibaud R, Assenmacher I 1987 Further evidence for central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology, in press

    Google Scholar 

  49. Siggins GR, Gruol D, Aldenhoff J, Pittman Q 1985 Electrophysiological actions of corticotropin-releasing factor in the central nervous system. Fed Proc 44:237

    PubMed  CAS  Google Scholar 

  50. Riphagen CL, Pittman QJ 1986 Arginine vasopressin as a central neurotransmitter. Fed Proc 45:2318

    PubMed  CAS  Google Scholar 

  51. DeSouza EB, Insel TR, Perrin MH, Rivier J, Vale WW 1985 Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: An autoradiographic study. J Neurosci 5:3189

    CAS  Google Scholar 

  52. Biegon A, Terlou M, Voorhuis TD, DeKloet ER 1984 Arginine vasopressin binding sites in rat brain: a quantitative autoradiographic study. Neurosci Lett 44:229

    Article  PubMed  CAS  Google Scholar 

  53. Ono N, Bedran de Castro JC, McCann SM 1985 Ultrashort-loop positive feedback of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. Proc Natl Acad Sci USA 82:3528

    Article  PubMed  CAS  Google Scholar 

  54. Hedge GA, Yates MB, Marcus R, Yates FE 1966 Site of action of vasopressin in causing corticotropin release. Endocrinology 79:328

    Article  PubMed  CAS  Google Scholar 

  55. Plotsky PM, Bruhn TO, Otto S 1985 Central modulation of immunoreactive arginine vasopressin and oxytocin secretion into the hypophysial-portal circulation by corticotropin-releasing factor. Endocrinology 116:1669

    Article  PubMed  CAS  Google Scholar 

  56. Plotsky PM, Bruhn TO, Otto S 1984 Central modulation of immunoreactive corticotropin-releasing factor secretion by arginine vasopressin. Endocrinology 115:1639

    Article  PubMed  CAS  Google Scholar 

  57. Rivier CL, Plotsky PM 1986 Mediation by corticotropin releasing factor (CRF) of adenohypophysial hormone secretion. Ann Rev Physiol 48:475

    Article  CAS  Google Scholar 

  58. Plotsky PM, Sawchenko PE 1987 Hypophysial-portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin and oxytocin after pharmacological adrenalectomy. Endocrinology 120: in press

    Google Scholar 

  59. Akana SF, Cascio CS, Shinsako J, Dallman MF 1985 Corticosterone: narrow range required for normal body and thymus weight and ACTH. Am J Physiol 249:R527

    PubMed  CAS  Google Scholar 

  60. Agnati LF, Fuxe K, Yu ZY, Hafastrand A, Okret S, Wikstrom AC, Goldstein M, Zoli H, Vale W, Gustafsson JA 1985 Morphometrical analysis of the distribution of corticotropin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyl-transferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci Lett 54:147

    Article  PubMed  CAS  Google Scholar 

  61. McEwen BS, De Kloet ER, Rostene W 1986 Adrenal steroid receptors and actions in the nervous system. Physiological Rev 66:1121

    CAS  Google Scholar 

  62. Horn AM, Robinson IC, Fink G 1985 Oxytocin and vasopressin in rat hypophysial portal blood: experimental studies in normal and Brattleboro rats. J Endocrinol 104:211

    Article  PubMed  CAS  Google Scholar 

  63. Siggins G, Gruol D 1986 Mechanisms of transmitter action in the vertebrate central nervous system. In: Bloom FE (ed) Handbook of Physiology, American Physiological Society, Washington D.C., p. 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plotsky, P.M. (1988). Hypophysiotropic Regulation of Stress-Induced ACTH Secretion. In: Chrousos, G.P., Loriaux, D.L., Gold, P.W. (eds) Mechanisms of Physical and Emotional Stress. Advances in Experimental Medicine and Biology, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2064-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2064-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2066-9

  • Online ISBN: 978-1-4899-2064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics