Skip to main content

CRH Effects on Central Noradrenergic Neurons: Relationship to Stress

  • Chapter
Mechanisms of Physical and Emotional Stress

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 245))

Abstract

The stress response is generally considered to be composed of endocrine, behavioral, and autonomic components, coordinated in such a way that it mobilizes the organism to best respond to a stressful stimulus and ultimately return to a homeostatic state. It is now well established that corticotropin-releasing hormone (CRH) is the primary neurohormone responsible for initiating the endocrine component of the stress response, i.e., release of ACTH from anterior pituitary cells1,2,3. Evidence supporting this role is summarized in other chapters of this series. An additional, broader, role for CRH may also be hypothesized; as a neurotransmitter acting in extrahypothalamic circuits to initiate an integrated CNS response to stress that includes the behavioral and autonomic components. To support such a role, several criteria should be met. For example, CRH should be localized in CNS regions whose potential function is to modify behavior or autonomie acitivity. It should alter activity of neurons in these target regions, and a mechanism should exist to translate CRH electrophysiological effects to appropriate behaviors or autonomic responses that are normally observed in the stress response. Most importantly, it should be demonstrated that stressful stimuli elicit release of CRH in these extrahypothalamic circuits resulting in subsequent changes in neuronal activity and the appropriate behaviors or autonomic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Vale, C. Rivier, M.R. Brown, J. Spiess, G. Koob, L. Swanson, L. Bilezikjian, F. Bloom, and J. Rivier, Chemical and biological characterization of corticotropin releasing factor, Rec. Procr. Horm. Res. 39:245–270 (1983).

    CAS  Google Scholar 

  2. W. Vale, J. Spiess, C. Rivier, and J. Rivier, Character-ization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394–1397 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. C. Rivier, J. Rivier, and W. Vale, Inhibition of adrenocorticotropic hormone secretion in the rat by immunoneutralization of corticotropin-releasing factor, Science 218:377–378 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. S. Cummings, R. Eide, J. Ells, and A. Lendall, Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: An immunohistochemical study. J. Neurosci. 3:1355–1368 (1983).

    PubMed  CAS  Google Scholar 

  5. A.J. Fischman, and R.L. Moldow, Extrahypothalamic distribution of CRF-like immunoreactivity in the rat brain. Peptides (Favetteville) 3:149–153 (1982).

    Article  CAS  Google Scholar 

  6. I. Merchenthaler, M.A. Hynes, S. Vigh, A.V. Schally, and P. Petrusz, Immunocytochemical localization of corticotropin-releasing factor (CRF) in rat brain. Am. J. Anat. 165:383–396 (1982).

    Article  Google Scholar 

  7. J.A. Olschowka, T.L. O’Donahue, G.P. Mueller, and D.M. Jacobowitz, The distribution of corticotropin-releasin factor-like immunoreactive neuron in rat brain. Peptides 3:995–1015 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. L.W. Swanson, P.E. Sawchenko, J. Rivier, and W. Vale, Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology 36:165–186 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. R.J. Valentino, C.I. Cha, and S.L. Foote, Anatomic and physiologic evidence for innervation of noradrenergic locus coeruleus by neuronal corticotropin-releasing factor. Soc. Neurosci. Abstr. 12, 1003 (1986).

    Google Scholar 

  10. E.B. De Souza, M.H. Perrin, T.R. Insel, J. Rivier, W.W. Vale, and M.J. Kuhar, Corticotropin-releasing factor receptors in rat forebrain: autoradiographic ident-ification, Science 224:1449–1451 (1984).

    Article  PubMed  Google Scholar 

  11. E.B. De Souza, T.R. Insel, M.H. Perrin, J. Rivier, W.W. Vale, and M.J. Kuhar, Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: An autoradiographic study, J. Neurosci. 5:3189–3203 (1985).

    PubMed  Google Scholar 

  12. P.C. Wynn, R.L. Hauger, M.C. Holmes, M.A. Millan, K.J. Catt, and G. Auilera, Brain and pituitary receptors for corticotropin-releasing factor: Localization and differential regulation after adrenalectomy, Peptides 5; 1077–1084 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. L.B. Eberly, C.A. Dudley, and R.L. Moss, Iontophoretic mapping of corticotropin-releasing factor (CRF) sensitive neurons in the rat forebrain, Peptides 4:837–841 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. J.B. Aldenhoff, D.L. Gruol, J. Rivier, W. Vale, and G.R. Siggins, Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons, Science 221:875–877 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. R.J. Valentino, S.L. Foote, and G. Aston-Jones, Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus, Brain Res. 270:363–367 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. R.J. Valentino, and S.L. Foote, Corticotropin-releasing factor disrupts sensory responses of brain noradrenergic neurons, Neuroendocrinol. 45:28–36 (1987).

    Article  CAS  Google Scholar 

  17. C.L. Ehlers, S.J. Henricksen, M. Wang, J. Rivier, W.W. Vale, and F.E. Bloom, Corticotropin-releasing factor produces increases in brain excitability and convulsive seizures in rats, Brain Res. 278:332–336 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. M.R. Brown, L.A. Fisher, J. Rivier, J. Spiess, C. Rivier, and W. Vale, Corticotropin-releasing factor: Effects on the sympathetic nervous system and oxygen consumption, Life Sci. 30:207–210 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. M.R. Brown, L.A. Fisher, J. Spiess, C. Rivier, J. Rivier, and W. Vale, Corticotropin-releasing factor: actions on the sympathetic nervous system and metabolism, Endocrinol. 111:928–931 (1982).

    Article  CAS  Google Scholar 

  20. L.A. Fisher, J. Rivier, C. Rivier, J. Spiess, W. Vale, and M.R. Brown, Corticotropin-releasing factor (CRF): Central effects on mean arterial pressure and heart rate in rats. Endocrinology 110:2222–2224 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. Y. Tache, Y. Goto, M. Gunion, W. Vale, J. Rivier, and M. Brown, Inhibition of gastric acid secretion in rats by intracerebral injection of corticotropin-releasing factor (rCRF), Science 222:935–937 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. Y. Tache, D. Hamel, and M. Gunion, Inhibition of gastric acid secretion in rats by intracisternal or intrathecal injection of rat corticotropin-releasing factor (rCRF), Dig. Dis. Sci. 29:86S (1984).

    Article  Google Scholar 

  23. R.E. Sutton, G.F. Koob, M. LeMoal, J. Rivier, and W. Vale, Corticotropin-releasing factor produces behavioral activation in rats, Nature 297:331–333 (1982).

    Article  PubMed  CAS  Google Scholar 

  24. D.R. Britton, G.F. Koob, J. Rivier, and W. Vale, Intraventricular corticotropin releasing factor enhances behavioral effects of novelty, Life Sci. 31:363–367 (1982).

    Article  PubMed  CAS  Google Scholar 

  25. D.R. Britton, and K.K. Britton, A sensitive open field measure of anxiolytic drug activity, Pharmacol. Biochem. Behav. 15:577–582 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. K. Britton, J. Morgan, J. Rivier, W. Vale, and G. Koob, Chlordiazepoxide attenuates CRF-induced response suppression in the conflict test, Psychopharmacology 86:170–174 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. K.T. Britton, G. Lee, R. Dana, S.C. Risch, and G.F. Koob, Activating and “anxiogenic” effects of corticotropin-releasing factor are not inhibited by blockade of the pituitary-adrenal system with dexa-methasone, Life Sci. 39:1281–1286 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. N.H. Kaiin, S.E. Shelton, G.W. Karemer, and W.T. McKenney, Corticotropin-releasing factor administered intraventricularly to rhesus monkeys, Peptides (Favetteville) 4:217–220 (1983).

    Article  Google Scholar 

  29. N.H. Kalin, Behavioral effects of ovine corticotropinreleasing factor administered to rhesus monkeys, Fed. Proc. 44:249–254 (1985).

    PubMed  CAS  Google Scholar 

  30. G. Aston-Jones, M. Ennis, V.A. Pieribone, W.T. Nickell, and M.T. Shipley, The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network, Science 234:734–737 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. P.B. Chappell, M.A. Smith, C.D. Kilts, G. Bissette, J. Ritchie, C. Anderson, and C.B. Nemeroff, Alterations in corticotropin-releasing factor-like immuno-reactivity in discrete rat brain regions after acute and chronic stress. J. Neurosci. 6:2908–2914 (1986).

    PubMed  CAS  Google Scholar 

  32. R. Grzanna, and M.E. Molliver, The locus coeruleus in the rat: an immunohistochemical delineation, Neuro-science 5:21–40 (1980).

    CAS  Google Scholar 

  33. L.W. Swanson, and B.K. Hartman, The central adrenergic system: An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as a marker. J. Comp. Neurol. 163:467–507 (1976).

    Article  Google Scholar 

  34. B.E. Jones, A.E. Halaris, and O.X. Freeman, Innervation of forebrain regions by medullary noradrenaline neurons, a biochemical study in cats with central tegmental tract lesions, Neurosci. Lett. 10:251–258 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. R.M. Kobayashi, M. Palkovits, I.J. Kopin, and D.M. Jacobowitz, Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus, Brain Res. 77:269–279 (1974).

    Article  PubMed  CAS  Google Scholar 

  36. G. Aston-Jones, and F.E. Bloom, Activity of norepinephrine containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle, J. Neurosci. 1:876–886 (1981).

    PubMed  CAS  Google Scholar 

  37. G. Aston-Jones, and F.E. Bloom, Norepinephrine-containing neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli, J. Neurosci. 1:887–900 (1981).

    PubMed  CAS  Google Scholar 

  38. S.L. Foote, G. Aston-Jones, and F.E. Bloom, Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Nat. Acad. Sci. (U.S.A.) 77:3033–3037 (1980).

    Article  CAS  Google Scholar 

  39. J.M. Cedarbaum, and G.K. Aghajanian, Activation of locus coeruleus neurons by peripheral stimuli: Modulation by a collateral inhibitory mechanism, Life Sci. 23:1383–1392 (1978).

    Article  PubMed  CAS  Google Scholar 

  40. K. Rasmussen, D.A. Morilak, and B.L. Jacobs, Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli, Brain Res. 371:324–334 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. S.L. Foote, F.E. Bloom, and G. Aston-Jones, Nucleus locus coeruleus: new evidence of anatomical and physiological specificity, Physiol. Rev. 63:844–914 (1983).

    PubMed  CAS  Google Scholar 

  42. B.D. Waterhouse, H.C. Moises, and D.J. Woodward, Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neurotransmitters, Exp. Neurol. 69:30–49 (1980).

    Article  PubMed  CAS  Google Scholar 

  43. B.D. Waterhouse, H.C. Moises, H.H. Yeh, and D.J. Woodward, 1982, Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: mediation by β-adrenergic receptors, J. Pharmacol. Exp. Ther. 221:495–506 (1982).

    PubMed  CAS  Google Scholar 

  44. M. Segal, and F.E. Bloom, The action of norepinephrine in the rat hippocampus. I. Iontophretic studies, Brain Res. 72:79–97 (1974).

    Article  PubMed  CAS  Google Scholar 

  45. M. Segal, and F.E. Bloom, The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway, Brain Res. 72:99–114 (1974).

    Article  PubMed  CAS  Google Scholar 

  46. M. Segal, and F.E. Bloom, The action of norepinephrine in the rat hippocampus. III. Hippocampal cellular responses to locus coeruleus stimulation in the awake rat, Brain Res. 107:499–511 (1976).

    Article  PubMed  CAS  Google Scholar 

  47. R. Freedman, B.J. Hoffer, D.J. Woodward, and D. Riro, Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers, Exp. Neurol. 55:269–288 (1977).

    Article  PubMed  CAS  Google Scholar 

  48. H.C. Moises, B.D. Waterhouse, and B.J. Woodward, Locus coeruleus stimulation potentiates Purkinje cell responses to afferent input: the climbing fiber system, Brain Res. 222:43–64 (1981).

    Article  PubMed  CAS  Google Scholar 

  49. D.J. Woodward, H.C. Moises, B.D. Waterhouse, B.J. Hoffer, and R. Freedman, Modulatory actions of norepinephrine in the central nervous system, Fed. Proc. 38:2109–2116 (1979).

    PubMed  CAS  Google Scholar 

  50. A.M. Thierry, F. Javoy, J. Glowinski, and S.S. Kety, Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat: modification of norepinephrine turnover, J. Pharmacol. Exp. Ther. 163:163–171 (1968).

    PubMed  CAS  Google Scholar 

  51. J. Korf, G.K. Aghjanian, and R.H. Roth, Increased turnover of norepinephrine in the rat cerebral cortex during stress: Role of the locus coeruleus, Neuropharmacology 12:933–938 (1973).

    Article  PubMed  CAS  Google Scholar 

  52. G. Cassens, M. Roffman, A. Kuruc, P.J. Orsulak, and J.J. Schildkraut, Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock, Science 209:1138–1139 (1980).

    Article  PubMed  CAS  Google Scholar 

  53. G. Cassens, A. Kuruc, M. Roffman, P.J. Orsulak, and J.J. Schildkraut, Alterations in brain norepinephrine metabolism and behavior induced by environmental stimuli previously paired with inescapable shock, Behav. Brain Res. 2:387–407 (1981).

    Article  PubMed  CAS  Google Scholar 

  54. R.A. Solomon, B.M. McCormack, R.N. Lovitz, D.M. Swift, and M.T. Hegemann, Elevation of brain norepinephrine concentration after experimental subarachnoid hemorrhage, Neurosurg. 19:363–366 (1986).

    Article  CAS  Google Scholar 

  55. T.H. Svensson, and P. Thoren, Brain noradrenergic neurons in the locus coeruleus: inhibition by blood volume load through vagal afferents, Brain Res. 172:174–178 (1979).

    Article  PubMed  CAS  Google Scholar 

  56. M. Elam, T. Yao, T.H. Svensson, and P. Thoren, Regulation of locus coeruleus neurons and splanchnic, sympathetic nerves by cardiovascular afferents, Brain Res. 290:281–287 (1984).

    Article  PubMed  CAS  Google Scholar 

  57. M. Elam, T. Yao, P. Thoren, and T.H. Svensson, Hypercapnia and hypoxia: Chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res. 222:373–381 (1981).

    Article  PubMed  CAS  Google Scholar 

  58. R.J. Valentino, and S.L. Foote, Corticotropin-releasing factor increases tonic activity of locus coeruleus neurons and disrupts their responses to auditory stimuli: Studies in unanesthetized rats (Submitted).

    Google Scholar 

  59. R. Andrade, and G.K. Aghajanian, Locus coeruleus activity in vitro: intrinsic regulation by a calcium-dependent potassium conductance but not α2-adrenoreceptors. J. Neurosci. 4:161–170 (1984).

    PubMed  CAS  Google Scholar 

  60. J.T. Williams, R.A. North, S.A. Shefner, S. Nishi, and T.M. Egan, Membrane properties of rat locus coeruleus neurons, Neuroscience 13:137–156 (1984).

    Article  PubMed  CAS  Google Scholar 

  61. R.J. Valentino, and E.F. Aulisi, Carbachol-induced increase in locus coeruleus activity are associated with an altered pattern of response to sensory stimuli. Neurosci. Lett (in press).

    Google Scholar 

  62. P.W. Gold, D.L. Loriaux, A. Roy, M.A. Kling, J.R. Calabrese C.H. Kellner, L.K. Nieman, R.M. Post, D. Pickar, W. Gallucci, P. Avgerinos, S. Paul, E.H. Oldfield, G.B. Cutler, Jr., and G.P. Chrousos, Responses to corticotropin-releasing hormone in the hypercortisolis of depression arid Cushings disease, New Eng. J. Med. 314:1329–1334 (1986),.

    Article  PubMed  CAS  Google Scholar 

  63. P.W. Gold, H. Gwirtsman, P.C. Averginos, L.K. Nieman, W.T. Gallucci, W. Kaye, D. Jimerson, M. Ebert, R. Rittmaster, D.L. Loriaux, and G.P. Chrousos, Abnormal hypothalamic-pituitary-adrenal function in anorexia nervosa: pathophysiological mechanisms in underweight and weight-corrected patients, New Eng. J. Med. 314:1335–1342 (1986).

    Article  PubMed  CAS  Google Scholar 

  64. C.B. Nemeroff, E. Widerlov, G. Bissette, H. Wallerus, I. Karlsson, K. Eklund, C.D. Kilts, P.T. Loosen, and W. Vale, Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients, Science 226:1342–1344 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valentino, R.J. (1988). CRH Effects on Central Noradrenergic Neurons: Relationship to Stress. In: Chrousos, G.P., Loriaux, D.L., Gold, P.W. (eds) Mechanisms of Physical and Emotional Stress. Advances in Experimental Medicine and Biology, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2064-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2064-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2066-9

  • Online ISBN: 978-1-4899-2064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics