Skip to main content

Energy—Bandwidth Comparisons and Shannon Theory for Phase Modulation

  • Chapter
Digital Phase Modulation

Abstract

Neither energy nor bandwidth consumption alone is a sufficient measure of a modulation system. It is a simple matter to reduce the bandwidth of a scheme if large energy is available, and similarly high energy is not needed for a low error probability if a large bandwidth can be tapped. What is much more difficult is reducing one of these without reducing consumption of the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. G. Gallager, Information Theory and Reliable Communications, Wiley, New York, 1968.

    Google Scholar 

  2. A. J. Viterbi and J. K. Omura, Principles of Digital Communications and Coding, McGraw-Hill, New York, 1979.

    Google Scholar 

  3. H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty, Part III: The dimension of the space of essentially time-and band-limited signals, Bell Syst. Tech. J. 41, 1295–1336 (1962).

    MathSciNet  MATH  Google Scholar 

  4. D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty, Part I, Bell Syst. Tech. J. 40, 43–64 (1961).

    MathSciNet  MATH  Google Scholar 

  5. C. E. Shannon, Probability of error for optimal codes in a Gaussian channel, Bell Syst. Tech. J. 38, 611–656 (1959).

    MathSciNet  Google Scholar 

  6. J. M. Wozencraft and I. M. Jacobs, Principles of Communications Engineering, Wiley, New York, 1965.

    Google Scholar 

  7. R. de Buda and W. Kassem, About lattices and the random coding theorem, IEEE Trans. Inf. Theory, in press (1985).

    Google Scholar 

  8. J. Massey, Coding and modulation in digital communications, Proceedings, Int. Zurich Seminar on Digital Communications, Zurich, Switzerland, March 1974.

    Google Scholar 

  9. J. B. Anderson, C.-E. Sundberg, T. Aulin, and N. Rydbeck, “Power-bandwidth performance of smoothed phase modulation codes,” IEEE Trans. Commun. COM-29, 187–195 (1981).

    Article  Google Scholar 

  10. T. Aulin and C.-E. Sundberg, CPM—An efficient constant amplitude modulation scheme, Int. J. Satellite Commun. 2, 3, 161–186 (1984).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, J.B., Aulin, T., Sundberg, CE. (1986). Energy—Bandwidth Comparisons and Shannon Theory for Phase Modulation. In: Digital Phase Modulation. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2031-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2031-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2033-1

  • Online ISBN: 978-1-4899-2031-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics