Skip to main content

Abstract

The conceptual structure of a robot vision system is shown in Figure 9.1. The object under consideration, together with the world around it, is scanned by the input unit of the vision system, and possibly examined by other types of sensors, and the outputs from these actions are passed to processors.(1) The principal task of the processors is to extract the information that is important from the usually much greater information that is redundant. The extracted information passes to the main control unit which holds a model of the world appropriate to the whole robotic system and has the program to execute the required process. It converts the information into the form required by the controller of the robot and of other mechanical systems. The main controller is aided in its task by a priori knowledge of the world, of the parameters of the sensing and actuating systems, and of the objects on which the system is to operate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A.G. Knight, Sensors for robots: The state of the art, Proc. 2nd European Conf. on Automated Manufacturing, 127-132, Birmingham (May 1983).

    Google Scholar 

  2. P.J. Gregory and CJ. Taylor, Knowledge-based models for computer vision, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 325-330, London (Oct. 1984).

    Google Scholar 

  3. J. Foster, P.M. Hage, and J. Hewit, Development of an expert vision system for automatic industrial inspection, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 303-311, London (Oct. 1984).

    Google Scholar 

  4. D. Nitzan, Use of sensors in robot systems, Proc. Intl. Conf. on Advanced Robotics, Japan Industrial Robot Association, 123-132, Tokyo (1983).

    Google Scholar 

  5. P. Sholl and C. Loughlin, A practical solution to real-time path-control of a robot, Proc 4th Intl. Conf. on Robot Vision and Sensory Controls, 209-221, London (Oct. 1984).

    Google Scholar 

  6. J. Amat, A. Casals, and V. Llario, Location of work-pieces and guidance of industrial robots with a vision system, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 223-230, London (Oct. 1984).

    Google Scholar 

  7. E. Freund and H. Hoyer, A fast control method for collision avoidance of industrial robots, Proc. Intl. Symp. on Automotive Technology and Automation, 1787-1803, Milan (Sept. 1984).

    Google Scholar 

  8. H.B. Kuntze and W. Schill, Methods for collision avoidance in computer controlled industrial robots, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf. on Industrial Robot Technology, 519-530, Paris (June 1982).

    Google Scholar 

  9. U.L. Haass, H. B. Kuntze, and W. Schill, A surveillance system for obstacle recognition and collision avoidance control in robot environment, Proc. 2nd Intl. Conf. on Robot Vision and Sensory Controls, 357-366, Stuttgart (Nov. 1982).

    Google Scholar 

  10. S. Ganapathy, Decomposition of transformation matrices for robot vision, Intl. Conf. on Robotics, IEEE Computing Soc. Press, 130-139, Atlanta (Mar. 1984).

    Google Scholar 

  11. W. Patzelt, A robot position control algorithm for the grip onto an accelerated conveyor belt, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf on Industrial Robot Technology, 391-399, Paris (June 1982).

    Google Scholar 

  12. S.W. Holland, L. Rossol, and M.R. Ward, Consight-L A vision controlled robot system for transferring parts from belt-conveyors, in: Computer Vision and Sensorbased Robots, G.G. Dodd and L. Rossol (eds.), 81–100, Plenum Press, New York (1979).

    Chapter  Google Scholar 

  13. A. Browne, The orientation of components for automatic assembly, Assembly Automation 1(1), 30–35 (Nov. 1980).

    Article  Google Scholar 

  14. D. Andree and A. Wernersson, Linear vision for finding the orientation of parts: learning procedures, Proc. 2nd Intl. Conf. on Robot Vision and Sensory Controls, 147-158, Stuttgart (Nov. 1982).

    Google Scholar 

  15. P. Horaud and R.C. Bolles, 3DPO’s Strategy for matching three-dimensional objects in range data, Intl. Conf on Robotics, IEEE Computing Soc. Press, 78-85, Atlanta (Mar. 1984).

    Google Scholar 

  16. R.N. Stauffer, Update on non-contact seam tracking systems, Robotics Today, 5(4), 29–34 (Aug. 1983).

    MathSciNet  Google Scholar 

  17. M.P. Howarth and M.F. Guyote, Eddy current and ultrasonic sensors for robot arc welding, Sensor Review, 3(2), 90–93 (April 1983).

    Article  Google Scholar 

  18. J.F. Justice, Sensors for robotic arc welding, Proc. Automation and Robotics for Welding, American Welding Society, 203-209, Miami (1983).

    Google Scholar 

  19. E.L. Estochen, C.P. Neuman, and F.B. Prinz, Application of acoustic sensors to robotic seam tracking, IEEE Trans. Industrial Electronics IE-31(5), 219–224 (Aug. 1984).

    Article  Google Scholar 

  20. S. Presern, M. Spegal, and I. Ozimek, Tactile sensing system with sensory feedback control for industrial arc welding robots, Proc. 1st Intl. Conf. on Robot Vision and Sensory Controls, 205-213, Stratford-upon-Avon (April 1981).

    Google Scholar 

  21. J.G. Bollinger, Using a tactile sensor to guide a robot welding machine, Sensor Review 1(3), 136–141 (July 1981).

    Article  Google Scholar 

  22. D. LaCoe and L. Seibert, 3D vision guided welding robot system, The Industrial Robot 11, 18–20 (March 1984).

    Google Scholar 

  23. H. Toda and I. Masaki, Kawasaki vision system—model 79A, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf. on Industrial Robot Technology, 163-174, Milan (March 1980).

    Google Scholar 

  24. Z. Smati, D. Yapp, and C.J. Smith, Laser guidance system for robots, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 91-101, London (Oct. 1984).

    Google Scholar 

  25. J.E. Agapakis, K. Masubuchi, and N. Wittles, General visual sensing techinques for automated welding fabrication, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 103-114, London (Oct. 1984).

    Google Scholar 

  26. W.F. Clocksin, P.G. Davey, C.G. Morgan and A.R. Vidler, Progress in visual feedback for robot arc-welding of thin sheet steel, Proc. 2nd Intl. Conf. on Robot Vision and Sensory Controls, 189-200, Stuttgart (Nov. 1982).

    Google Scholar 

  27. W.J.P.A. Verbeck, Arc welding process control by preview sensor, The Industrial Robot 11, 86–88 (June 1984).

    Article  Google Scholar 

  28. A. de Keijzer and R.J. de Groot, Laser-based arc welding sensor monitors weld preparation profile, Sensor Review 4(1), 8–10 (Jan. 1984).

    Article  Google Scholar 

  29. Anon., Leading the way on robot weld guidance, The Industrial Robot 10, 104-107 (June 1983).

    Google Scholar 

  30. Z. Smati, C.J. Smith, and D. Yapp, An industrial robot using sensory feedback for an automatic multipass welding system, Proc. 6th British Robot Association Annual Conf, 91-100, Birmingham (May 1983).

    Google Scholar 

  31. N.R. Corby, Machine vision algorithms for vision guided robotic welding, Proc 4th Intl. Conf on Robot Vision and Sensory Controls, 137-147, London (Oct. 1984).

    Google Scholar 

  32. R. Niepold and F. Bruemmer, Optical sensory system controls arc welding process, Proc. 2nd Intl. Conf on Robot Vision and Sensory Controls, 201-212, Stuttgart (Nov. 1982).

    Google Scholar 

  33. P.M. Taylor, K.K.W. Selke, and G.E. Taylor, Closed loop control of an industrial robot using visual feedback from a sensory gripper, Proc. 12th Intl. Symp on Industrial Robots and 6th Intl. Conf on Industrial Robot Technology, 79-86, Paris (June 1982).

    Google Scholar 

  34. G.R. Archer, Vision in programmable assembly systems—results, Proc 5th Intl. Conf on Assembly Automation, 65-74, Paris (May 1984).

    Google Scholar 

  35. A. Osorio, K. Ben Rhouma, L. Henninger, A. Meller, L. Peralta, J. Rivaillier, and D. Teil, Workpiece identification, grasping and manipulation in robotics, Proc 5th Intl. Conf on Assembly Automation, 143-151, Paris (May 1984).

    Google Scholar 

  36. G. Schupp, Automated passenger car wheel mounting system, Proc. 5th Intl. Conf on Assembly Automation, 111-116, Paris (May 1984).

    Google Scholar 

  37. H. Worn and H.R. Tradt, Automatic assembly with industrial robots, Proc. 3th Intl. Conf on Assembly Automation, 525-545, Boeblingen (May 1982).

    Google Scholar 

  38. M. Uno, A Miyakawa, and T. Ohashi, Multiple parts assembly robot station with visual sensor, Proc. 5th Intl. Conf on Assembly Automation, 55-64, Paris (May 1984).

    Google Scholar 

  39. J.W. Hill, Programmable bowl feeder design based on computer vision, Assembly Automation 1(1), 21–25 (Nov. 1980).

    Article  Google Scholar 

  40. R.J. Dewhurst and K.G. Swift, A laser electro-optic device for the orientation of mass-produced components, Optics and Laser Eng. (GB), 4(4), 203–215 (1983).

    Article  Google Scholar 

  41. Anon., Robot assembly component supply, Assembly Automation, 3(3), 130 (Aug 1983).

    Google Scholar 

  42. A.J. Cronshaw, W.B. Heginbotham, and A. Pugh, A practical vision system for use with bowl feeders, Proc. 1st Intl. Conf. Assembly Automation, 265-274, Brighton (Mar. 1980).

    Google Scholar 

  43. O. Ledoux and M. Bogaert, Pragmatic approach to the bin picking problem, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 313-323, London (Oct. 1984).

    Google Scholar 

  44. R. Kelley, J. Birk, J. Dessimoz, H. Martins, and R. Telia, Acquiring connecting rod castings using a robot with vision and sensors, Proc. 1st Intl. Conf. on Robot Vision and Sensory Controls, 169-178, Stratford-upon-Avon (April 1981).

    Google Scholar 

  45. R. Ray and J. Wilder, Visual and tactile sensing for robotic acquisition of jumbled parts, Optical Engineering 23(5), 523–530 (Sept.-Oct. 1984).

    Article  Google Scholar 

  46. G.J. Page, Vision driven stack picking in an FMS cell, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 1-12, London (Oct. 1984).

    Google Scholar 

  47. J-P. Hermann, Pattern recognition in the factory: An example, Proc. 12th Intl. Symp. on Industrial robots and 6th Intl. Conf on Industrial Robot Technology, 271-280, Paris (June 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Browne, A., Norton-Wayne, L. (1986). Robot Vision Systems and Applications. In: Vision and Information Processing for Automation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2028-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2028-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2030-0

  • Online ISBN: 978-1-4899-2028-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics