Skip to main content

Hydrogen Passivation of Polycrystalline Silicon

  • Chapter
Hydrogen in Disordered and Amorphous Solids

Part of the book series: NATO ASI Series ((NSSB,volume 136))

Abstract

Defects in polycrystalline silicon sheet which are associated with high angle grain boundaries, twin boundaries, and intragranular dislocation arrays have all been shown to be amenable to hydrogen passivation. Using the EBIC technique, it has been shown that nearly all the recombination producing defects can be passivated down to depths of 10–20 μm and that passivation depths of several hundred microns can sometimes occur. A model is advanced whereby the key defects being passivated are dislocations and where deep passivation is effected through rapid thermal diffusion down dislocation arrays, either in intragranular regions or in the grain boundaries themselves. Hydrogen diffusivity down grain boundaries and twin boundaries has been measured to be 10−8 to 10−10 cm2/sec. Diffusivity down intragranular dislocation arrays is < 10−8 cm2/sec. Surface recombination velocities, S, of the grain boundaries have been measured as a function of the passivation depth, X; and for X < 35 μm, ℓn S ∝ −X. Enhanced EBIC contrast at T = 100°K has been interpreted as due to shallow electron traps within ~0.1 eV of the conduction band edge. Such shallow traps do not seem to be subject to passivation while presumed deeper lying recombination levels at the same spatial location do respond to hydrogen passivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.V. Wald, Poly-Micro-Crystalline and Amorphous Semiconductors (Proc. of the European Materials Research Soc), ed. by P. Pinard and S. Kalbitzer.

    Google Scholar 

  2. B. Chalmers, J. Crystal Growth, 70, 3–10 (1984).

    Article  CAS  Google Scholar 

  3. C.H. Seager and D.S. Ginley, Appl. Phys. Lett., 34, 537 (1979).

    Article  Google Scholar 

  4. J.I. Hanoka, C.H. Seager, D.J. Sharp, and J.K.G. Panitz, Appl. Phys. Lett., 42(7), 618 (1983).

    Article  CAS  Google Scholar 

  5. F.V. Wald, in: Crystals: Growth Properties and Applications 5, edited by J. Grabmaier (Springer, Berlin, 1981), pp. 147–198.

    Google Scholar 

  6. J.M.E. Harper, J.J. Cuomo, and H.R. Kaufman, Ann. Rev. Mater. Sci., 13, 413 (1983).

    Article  CAS  Google Scholar 

  7. S.J. Pearton, Thirteenth International Conf. on Defects in Semiconductors, ed. by L.C. Kimerling and J.M. Parsey, Jr.; Metallurgical Society of AIME, Warrendale, PA, 1985, p. 737.

    Google Scholar 

  8. J.I. Hanoka and R.O. Bell, Ann. Rev. Mater. Sci., 11, 353 (1981).

    Article  CAS  Google Scholar 

  9. H.J. Leamy, J. Appl. Phys., 53, R51 (1982).

    Article  CAS  Google Scholar 

  10. J.I. Hanoka, R.O. Bell, and B. Bathey, in: Symposium on Electronic Optical Properties in Polycrystalline or Impure Semiconductors, Novel Crystal Growth Techniques, edited by K.V. Ravi and B. O’Mara (The Electrochemical Society, Princeton, New Jersey, 1980), pp. 76-86.

    Google Scholar 

  11. J.I. Hanoka, C.E. Dubé, and D.B. Sandstrom, to be published in Mat. Res. Soc. Symposium on “Microscopic Identification of Electron Defects in Semiconductors”, San Francisco Meeting, Spring 1985.

    Google Scholar 

  12. C. Donolato, Appl. Phys. Lett., 34, 80 (1979), and C. Donolato, Scanning Electron Microsc, Part I (1979), p. 257; also, C. Donolato and R.O. Bell, Rev. Sci. Instrum., 54, 1005 (1983).

    Article  CAS  Google Scholar 

  13. R.O. Bell and J.I. Hanoka, J. Appl. Phys., 53, 1741 (1982).

    Article  CAS  Google Scholar 

  14. C. Dubé, J.I. Hanoka, and D.B. Sandstrom, Appl. Phys. Lett., 44, 425 (1984).

    Article  Google Scholar 

  15. C. Dube and J.I. Hanoka, Appl. Phys. Lett., 45, 1135 (1984).

    Article  CAS  Google Scholar 

  16. David S. Ginley and R.P. Hellmer, 17th IEEE Photovoltaic Specialists Conference (IEEE: New York; 1984), p. 1213.

    Google Scholar 

  17. W. Schmidt, K.D. Rasch, and K. Roy, 16th IEEE Photovoltaic Specialists Conference (IEEE: New York; 1982, pp. 537–54.

    Google Scholar 

  18. M. Mautref, C. Belouet, A. Buenas, M. Aucouturier, and M. Groos, in Ref. 1, pp. 129-36.

    Google Scholar 

  19. S.J. Pearton and A.J. Tavendale, private communication.

    Google Scholar 

  20. J.I. Pankove, M.A. Lampert, and M.L. Tarng, Appl. Phys. Lett., 32(7), 439 (1978).

    Article  CAS  Google Scholar 

  21. C. Belouet, Ref. 1, pp. 53-66.

    Google Scholar 

  22. N.M. Johnson, D.E. Biegelson, and M.C. Moyer, Appl. Phys. Lett., 40, 882 (1982).

    Article  CAS  Google Scholar 

  23. M.N. Zolotukhin, V.V. Kveder, and Yu. A. Osip’yan, Sov. Phys., JETP 55(b), 1189 (1982).

    Google Scholar 

  24. S. Marklund, J. de Physique, Colloque C4, 44, 25 (1983).

    Google Scholar 

  25. M.I. Heggie and R. Jones, ibid., 44, 43 (1983).

    Google Scholar 

  26. R.N. Hall, Ref. 7, p. 759.

    Google Scholar 

  27. J.W. Corbett, S.N. Sahu, T.S. Shi, and L.C. Snyder, Phys. Lett., 93A 303 (1983).

    CAS  Google Scholar 

  28. J.W. Wang, S.T. Fonash, and S. Ashok, IEEE Electron Device Lett., EDL-4. No. 12, 432 (1983).

    Article  CAS  Google Scholar 

  29. J.K.G. Panitz, D.J. Sharp, and C.H. Seager, Thin Solid Films, 111, 277 (1984).

    Article  CAS  Google Scholar 

  30. A. Barhdadi, A. Mesli, E. Courcelle, D. Salles, and P. Siffert, in Ref. 1, pp. 373-377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanoka, J.I. (1986). Hydrogen Passivation of Polycrystalline Silicon. In: Bambakidis, G., Bowman, R.C. (eds) Hydrogen in Disordered and Amorphous Solids. NATO ASI Series, vol 136. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2025-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2025-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2027-0

  • Online ISBN: 978-1-4899-2025-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics