Skip to main content

NMR Studies of the Hydrides of Disordered and Amorphous Alloys

  • Chapter
Hydrogen in Disordered and Amorphous Solids

Part of the book series: NATO ASI Series ((NSSB,volume 136))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy has had extensive applications to the characterization of metal-hydrogen systems as is well documented in numerous previous review papers1−7. Structural information on hydrogen site occupancies can be obtained from the NMR lineshapes in the “rigid-lattice” (i. e., immobile nuclei) limit. The hyperfine interactions with conduction electrons can be monitored through Knight shifts (σK) and spin-lattice relaxation time (Tle) contributions. The various nuclear relaxation times are usually very sensitive1−7 to translational diffusion. Under suitable conditions, the hydrogen diffusion constants can be directly measured via various spin-echo techniques2,3,5,6. NMR studies have been conducted on all three hydrogen isotopes (i. e., H, D, and T) as well as many host metal nuclei (e. g., 45Sc, 51V, 89Y, 93Nb, and 139La). Although most attention has been primarily focused upon the binary hydride phases (i. e., TiHx, ZrHx, PdHx, etc.), the hydrides formed by crystalline alloys and interraetallics with nominal stoichiometries A2B, AB, AB2, and AB5 have been the subjects of NMR measurements during the past ten years or so. This interest was mainly stimulated by the potential applications of various ternary hydrides (e. g., TiFeHx, LaNi5Hx, Mg2NiHx) as reversible hydrogen storage systems. However, very few reports of NMR experiments on amorphous hydrides formed from metallic glasses have been published to date 8−16 in spite of the recent proliferation of papers on other aspects of these materials. The relative absence of NMR results for amorphous metal-hydrogen systems is partially due to the rather low sensitivity of the technique (i. e., many spectrometers typically require at least 0.5–1.0g samples — which Is often considered to be quite demanding in the metallic glass preparation field). Furthermore, few NMR experiments had been done for H/M ratios below about 0.1 in any crystalline hydride. In fact, most published NMR results8−15 for the amorphous hydrides have been for samples with hydrogen-to-metal (H/M) atomic ratios around unity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Cotts, Ber. Bunsenges. Phys. Chem. 76: 760 (1972).

    CAS  Google Scholar 

  2. R.M. Cotts, in “Hydrogen in Metals I — Basic Properties”, G. Alefeld and J. Volkl, eds., Springer-Verlag, Berlin (1978) p. 227.

    Chapter  Google Scholar 

  3. R.C. Bowman Jr., in “Metal Hydrides”, G. Bambakides, ed., Plenum, New York (1981), p.109.

    Chapter  Google Scholar 

  4. R.G. Barnes, in “Nuclear and Electron Spectroscopies Applied to Material Sciences”, E.N. Kaufmann and G. Shenoy, eds., Elsevier, Amsterdam (1981), p. 19.

    Google Scholar 

  5. E.F.W. Seymour, J. Less-Common Met. 88: 323 (1982).

    Article  CAS  Google Scholar 

  6. R.M. Cotts, in “Proc. Int. Symp. on Electronic Structure and Properties of Hydrogen in Metals”, P. Jena and C.B. Satterthwaite, eds., Plenum, New York (1983) p. 451.

    Chapter  Google Scholar 

  7. R.C. Bowman, Jr., Hyperfine Inter. (In Press).

    Google Scholar 

  8. R.C. Bowman Jr. and A.J. Maeland, Phys. Rev. B 24: 2328 (1981).

    Article  CAS  Google Scholar 

  9. P. Panissod and T. Mizoguchi, in “Proc. Rapidly Quenched Metals IV”, T. Masuraoto and K. Suzuki, eds., Japan Inst. Metals, Sendai (1982) p. 1621.

    Google Scholar 

  10. R.C. Bowman Jr., A.J. Maeland, and W.-K. Rhim, Phys. Rev. B 26: 6362 (1982).

    Article  CAS  Google Scholar 

  11. R.C. Bowman Jr., M.J. Rosker, and W.L. Johnson, J. Non-Cryst. Solids 53: 105 (1982).

    Article  CAS  Google Scholar 

  12. R.C. Bowman Jr., W.L. Johnson, A.J. Maeland, and W.-K. Rhim, Phys. Lett. A 94:181 (1983).

    Article  Google Scholar 

  13. R.C. Bowman Jr., A. Attalla, A.J. Maeland, and W.L. Johnson, Solid State Commun. 47:779 (1983).

    Article  CAS  Google Scholar 

  14. R.C. Bowman Jr., J.S. Cantrell, A. Attaila, D.E. Etter, B.D. Craft, J.E. Wagner, and W.L. Johnson, J. Non-Cryst. Solids 61 & 62: 649 (1984).

    Article  Google Scholar 

  15. R.C. Bowman Jr., J.S. Cantrell, E.L. Venturini, R. Schulz, J.E. Wagner, A. Attalla, and B.D. Craft, in “Rapidly Quenched Metals”, S. Steeb and H. Warlimont, eds., Elsevier, Amsterdam (1985) p. 1541.

    Google Scholar 

  16. K. Dolde, R. Messer, and U. Stolz, in “Rapidly Quenched Metals”, S. Steeb and H. Warlimont, eds. Elsevier, Amsterdam (1985) p. 1553.

    Google Scholar 

  17. H.J. Eifert, B. Elschner, and K.H.J. Buschow, Phys. Rev. B 25: 7441 (1982).

    Article  CAS  Google Scholar 

  18. H.R. Khan and K. Lueders, Phys. Stat. Sol. (b) 108:9 (1981).

    Article  CAS  Google Scholar 

  19. V.P. Bork, P.A. Fedders, R.E. Norberg, R.C. Bowman, Jr. and E.L. Venturini, Proceedings of this conference.

    Google Scholar 

  20. D.K. Ross, P.F. Martin, W.A. Oates, and R. Khoda-Bakhsh, Z. Physk. Chem. N.F. 114:221 (1979).

    Article  CAS  Google Scholar 

  21. J.J. Rush, J.M. Rowe, and A.J. Maeland, J. Phys. F: Met. Phys. 10: L283 (1980).

    Article  CAS  Google Scholar 

  22. K. Suzuki, J. Less-Common Met 89: 183 (1983).

    Article  CAS  Google Scholar 

  23. A. Williams, J. Eckert, X.L. Yeh, M. Atzmon, and K. Samwer, J. Non-Cryst. Solids 61 & 62: 643 (1984).

    Article  Google Scholar 

  24. K. Yvon, J. Less-Common Met. 103: 53 (1984).

    Article  CAS  Google Scholar 

  25. L.E. Drain, Proc. Phys. Soc. 80: 1380 (1962).

    Article  CAS  Google Scholar 

  26. R.C. Bowman Jr. and W.-K. Rhim, J. Magn. Reson. 49: 93 (1982).

    CAS  Google Scholar 

  27. D.L. Anderson, R.G. Barnes, D.T. Peterson, and D.R. Torgeson, Phys. Rev. B 21: 2625 (1980).

    Article  CAS  Google Scholar 

  28. R.C. Bowman Jr., E.L. Venturini, and W.-K. Rhim, Phys. Rev. B 26: 2652 (1982).

    Article  CAS  Google Scholar 

  29. A.J. Maeland and G.G. Libowltz, J. Less-Common Met. 74: 295 (1980).

    Article  CAS  Google Scholar 

  30. A.J. Maeland, J. Less-Common Met. 89: 173 (1983).

    Article  CAS  Google Scholar 

  31. R.C. Bowman, Jr., J.S. Cantrell, and A.J. Maeland, to be published.

    Google Scholar 

  32. A.J. Maeland, J.J. Rush, and A. Santoro, to be published.

    Google Scholar 

  33. I. Bakonyi, L. Takacs, and K. Tompa, Phys. Stat. sol. (b) 103: 489 (1981).

    Article  CAS  Google Scholar 

  34. M. Belhoul, G.A. Styles, E.F.W. Seymour, T.-T. Phua, R.G. Barnes, D.R. Torgeson, and D.T. Peterson, J. Phys. F: Met. Phys., 12: 2455 (1982).

    Article  CAS  Google Scholar 

  35. T.-T. Phua, B.J. Beaudry, D.T. Peterson, D.R. Torgeson, R.G. Barnes, M. Belhoul, G.A. Styles, and E.F.W. Seymour, Phys. Rev. B 28: 6227 (1983).

    Article  CAS  Google Scholar 

  36. M. Belhoul, G.A. Styles, E.F.W. Seymour, T.-T. Phua, R.G. Barnes, D.R. Torgeson, R.J. Schoenberger, and D.T. Peterson, J. Phys F: Met. Phys. 15: 1045 (1985).

    Article  CAS  Google Scholar 

  37. C.A. Sholl, J. Phys. C: Solid State Phys. 14: 447 (1981).

    Article  CAS  Google Scholar 

  38. J. Shinar, D. Davidov, and D. Shaltiel, Phys. Rev. B 30: 6331 (1984).

    Article  CAS  Google Scholar 

  39. J. Shinar, J. Less-Common Met. 104: 87 (1984).

    Article  CAS  Google Scholar 

  40. B.S. Berry and W.C. Pritchet, in “Nontraditional Methods in Diffusion”, G.E. Murch, H.K. Birnbaum, and J.R. Cost, eds., Metallurgical Society of AIME (1984) p.83.

    Google Scholar 

  41. G.G. Libowitz and A.J. Maeland, J. Less-Common Met. 101:131 (1984).

    Article  CAS  Google Scholar 

  42. L.E. Hazelton and W.L. Johnson, J. Non-Cryst. Solids 61 & 62: 667 (1984); and Y.S. Lee and D.A. Stevenson, J. Non-Cryst., Solids 72:249(1985).

    Article  Google Scholar 

  43. C. Korn and S.D. Goren, Phys. Rev. B 22:2727 (1980).

    Article  Google Scholar 

  44. P.M. Richards, Phys. Rev. B27:2059 (1983).

    Google Scholar 

  45. R.C. Bowman, Jr. and B.D. Craft (to be published).

    Google Scholar 

  46. R.C. Bowman Jr. and B.D. Craft, J. Phys. C: Solid State Phys. 17:L477 (1984).

    Article  CAS  Google Scholar 

  47. G.K. Schoep, N.J. Poulis, and R.R. Arons, Physica 75: 297 (1974).

    Article  CAS  Google Scholar 

  48. R.R. Arons, H.G. Bohn, and H. Lutgeinier, Solid State Commun. 14: 1203 (1974).

    Article  CAS  Google Scholar 

  49. T.Y. Hwang, R.T. Schoenberger, D.R. Torgeson, and R.G. Barnes, Phys. Rev. B 27:27(1983).

    Article  CAS  Google Scholar 

  50. G.A. Jaroszkiewicz and J.H. Strange, J. Phys. C:Solid State Phys. 18:2331(1985).

    Article  CAS  Google Scholar 

  51. J.S. Cantrell, R.C. Bowman, Jr., and G. Bambakidis, Proceedings of this Conference.

    Google Scholar 

  52. L. Schlapbach, J. Osterwalder, and T. Riesterer, J. Less-Common Met. 103: 295 (1984).

    Article  CAS  Google Scholar 

  53. E.L. Venturini, R.C. Bowman Jr., and J.S. Cantrell, J. Appl. Phys. 57:3542 (1985).

    Article  CAS  Google Scholar 

  54. J. Tebbe, K. Samwer, and R. Schulz, in “Rapidly Quenched Metals”, S. Steeb and H. Warliment, eds. Elsevier, Amsterdam (1985) p. 1581.

    Google Scholar 

  55. S.M. Fries, H.-G. Wagner, S.J. Campbell, U. Gonser, N. Blaes, and P. Steiner, J. Phys. F: Met. Phys. 15:1179(1985).

    Article  CAS  Google Scholar 

  56. M. Kullik, G. V. Minnigerode, and K. Samwer, Z. Phys. B-Condensed Matt. 60:357 (1985).

    Article  CAS  Google Scholar 

  57. V.L. Moruzzi, P. Oelhafen, A.R. Williams, R. Lapka, H.-J. Guntherodt, and J. Kubler, Phys. Rev. B 27: 2049 (1983).

    Article  CAS  Google Scholar 

  58. M. Gupta, J. Less Common Met. 101:35(1984).

    Article  CAS  Google Scholar 

  59. G.C. Carter, L.H. Bennett, and D.J. Kahan, “Metallic Shifts in NMR:, Pergamon, Oxford, 1977.

    Google Scholar 

  60. J. Korringa, Physica 16:601(1950).

    Article  CAS  Google Scholar 

  61. R.C. Bowman Jr., E.L. Venturini, B.D. Craft, A. Attalla, and D.B. Sullenger, Phys. Rev. B 27: 1474 (1983).

    Article  CAS  Google Scholar 

  62. M. Gupta and J.P. Burger, Phys. Rev. B 26: 2652 (1982).

    Article  Google Scholar 

  63. A.C. Switendick, J. Less-Common Met. 101: 191 (1984) and A.C. Switendick, J. Less-Common Met. 103:309 (1984).

    Article  CAS  Google Scholar 

  64. D.A. Papaconstanopoulos, B.M. Klein, E.N. Economu, and L.L. Boyer, Phys. Rev. B. 17:141 (1978) and D.A. Papaconstanopoulos, B.M. Klein, J.S. Faulkner, and L.L. Boyer, Phys Rev. B 18: 2784 (1978).

    Article  Google Scholar 

  65. R.H. Fairlie, W.M. Temmerraan and B.L. Gyorffy, J. Phys. F: Met. Phys. 12: 1641 (1982).

    Article  CAS  Google Scholar 

  66. H.-J. Eifert, B. Elschner, and K.H.J. Buschow, Phys. Rev. B 29:2905 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bowman, R.C. (1986). NMR Studies of the Hydrides of Disordered and Amorphous Alloys. In: Bambakidis, G., Bowman, R.C. (eds) Hydrogen in Disordered and Amorphous Solids. NATO ASI Series, vol 136. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2025-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2025-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2027-0

  • Online ISBN: 978-1-4899-2025-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics