Skip to main content

Thermal Stability of Hydrides of Disordered and Amorphous Alloys

  • Chapter
Hydrogen in Disordered and Amorphous Solids

Part of the book series: NATO ASI Series ((NSSB,volume 136))

Abstract

Hydrides of amorphous/glassy alloys have received considerable attention recently because of their potential applications as energy carriers, chemical storage of hydrogen, heat pumps, fuel cells, and heat engines (1,2). In all of these applications the uncharged intermetallic compound and the corresponding ternary hydride are subjected to a large number of charging and decharging cycles. A major disadvantage to using ternary hydrides which results after a relatively large number of cycles is the decomposition or disproportionation of the material so that it no longer absorbs hydrogen gas in a reversible way. It has been shown that this decomposition is a reaction by part of the ternary hydride to form the corresponding binary hydride of the more stable (stronger hydrogen-attracting component) plus free metal of the less hydrogen-attracting component (1). It is not well understood why this disproportionation reaction is significant for some systems and almost insignificant for other systems. In some cases an intermetallic compound is formed along with the more stable binary hydride instead of the free metal. Buschow, Bouten and Miedema (1) list over 100 intermetalic hydrides that have been prepared and partially characterized. There are several times this many that are known, yet few are really satisfactory for the applications listed above. This paper is limited to transition metal-transition metal type alloys where one metal (A) is the stronger hydrogen-attracting and (B) is the weaker hydrogen-attracting. Examples of A-type metals are early (IIIb, IVb, Vb such as Sc, Y, La, Ti, Zr, Hf, V, Nb, etc.) and B-type (late) (VIIIb, Ib such as Fe, Co, Ni, Cu, Rh, Pd, Ir, Pt, etc.). The alloys may be intermetallic compounds but often are all compositions that may be prepared by the melt-spinning technique and are only limited in composition by the range of glass-stability. These alloys are designated by the atom percent composition, such as Ti45Cu55 for an alloy of 45 atom percent Ti and 55 atom percent Cu. Both the crystalline (c−) and amorphous/glass (a−) alloys will be discussed in this paper. The systems that are discussed here are: a-TiCuHx, c-TiCuHx, c-Ti2CuHx, a-Zr2PdHx, c-Zr2PdHx, a-Zr3RhHx, where x refers to noninteger values for the hydrogen composition. In addition, the intermetallic alloys will be included in the properties discussed wherever appropriate. The experimental methods used to study thermal stability are differential scanning calorimetry (DSC), isothermal annealing, and powder X-ray diffraction (XRD). All XRD data have been taken at room temperature following quenching of the DSC or annealing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. H. J. Buschow, P.C.P. Bouten and A. R. Midema, Rept. Prog. Phys. 45, 937 (1982)

    Article  Google Scholar 

  2. U. Koster and U. Herold, in Glassy Metals, V. 15, H.-J. Guntherodt and H. Beck, eds. (Springer, Berlin 1981).

    Google Scholar 

  3. K. H. J. Buschow, J. Phys. F: Met, Phys. 14, 593 (1984) and references cited therein.

    Article  CAS  Google Scholar 

  4. I. Ansara, A. Pasturel and K. H. J. Buschow, Phys. Stat. Sol. (a) 69, 447 (1982).

    Article  CAS  Google Scholar 

  5. A. J. Maeland, in Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, eds. (Pergamon, Oxford 1978, p. 447.

    Chapter  Google Scholar 

  6. A. J. Maeland, L. E. Tanner and G. G. Libowitz, J. Less-Common Mets. 74, 279 (1980).

    Article  CAS  Google Scholar 

  7. R. C. Bowman Jr., R. J. Furlan, J. S. Cantrell and A. J. Maeland, J. Appl. Phys. 56, 3362 (1984).

    Article  CAS  Google Scholar 

  8. R. C. Bowman Jr., and A. J. Maeland, Phys. Rev. B24, 2328 (1981).

    Google Scholar 

  9. K. H. J. Buschow, Mat. Res. Bull. 19, 935 (1984).

    Article  CAS  Google Scholar 

  10. R. C. Bowman Jr., A. J. Maeland and W.-K. Rhim., Phys. Rev. B26, 6362 (1982).

    Google Scholar 

  11. A. J. Maeland, in Metal Hydrides (Am. Chem. Society, Washington, D.C. 1978), p. 302.

    Google Scholar 

  12. A. J. Maeland, in Metal Hydrides, G. Bambakidis, ed. (Plenum, New York 1981), p. 177.

    Chapter  Google Scholar 

  13. Joint Committee for Powder Diffraction Standards (JCPDS International Centre for Diffraction Data, Pennsylvania, 1981).

    Google Scholar 

  14. L. V. Azaroff and M. J. Buerger, in The Powder Method (McGraw-Hill, New York 1958), p. 106.

    Google Scholar 

  15. R. A. Dunlap and K. Dini, J. Phys. F: Met. Phys. 14, 2797 (1984).

    Article  CAS  Google Scholar 

  16. S. M. Fries, H.-G. Wagner, S. J. Campbell, U. Gonser, N. Blaes and P. Steiner, J. Phys. F: Met. Phys. 15, 1179 (1985).

    Article  CAS  Google Scholar 

  17. F. H. M. Spit, J. W. Drijver, W. C. Turkenburg and S. Radelaar, J. de Physique, 41 C8–890 (1980).

    Google Scholar 

  18. E. Batalla, Z. Altounian and J. 0. Strom-Olsen (to be published).

    Google Scholar 

  19. H. E. Kissenger, Anal. Chem. 29, 1702 (1957).

    Article  Google Scholar 

  20. F. G. Boswell, J. Therm. Anal. 18, 353 (1980).

    Article  CAS  Google Scholar 

  21. R. J. Furlan, G. Bambakidis, J. S. Cantrell, R. C. Bowman, Jr. and A. J. Maeland (to be published).

    Google Scholar 

  22. K. H. J. Buschow, Acta Met. 31, 155 (1983).

    Article  CAS  Google Scholar 

  23. J. J. Rush, J. M. Rowe and A. J. Maeland, J. Phys. F: Met. Phys. 10, L283 (1980).

    Article  CAS  Google Scholar 

  24. J. E. Wagner, R. C. Bowman, Jr. and J. S. Cantrell (to be published).

    Google Scholar 

  25. J. S. Cantrell, J. E. Wagner and R. C. Bowman Jr., J. Appl. Phys. 57, 545 (1985).

    Article  CAS  Google Scholar 

  26. R. C. Bowman Jr., J. S. Cantrell and D. E. Etter, Scripta Met. 18, 61 (1984).

    Article  CAS  Google Scholar 

  27. R. C. Bowman Jr., J. S. Cantrell, A. Attalla, D. E. Etter, B. D. Craft, J. E. Wagner and W. L. Johnson, J. Non-Cryst. Solids 61 & 62, 649 (1984).

    Article  Google Scholar 

  28. T. B. Flanagan and W. A. Oates, J. Less-Common Mets. 100, 299 (1984).

    Article  CAS  Google Scholar 

  29. R. Kadel and A. Weiss, Ber. Bunsenges. Phys. Chem. 82, 1290 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cantrell, J.S., Bowman, R.C., Bambakidis, G. (1986). Thermal Stability of Hydrides of Disordered and Amorphous Alloys. In: Bambakidis, G., Bowman, R.C. (eds) Hydrogen in Disordered and Amorphous Solids. NATO ASI Series, vol 136. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2025-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2025-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2027-0

  • Online ISBN: 978-1-4899-2025-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics