Skip to main content

The Pattern of Communication Through Gap Junctions During Formation of the Embryonic Axis

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 118))

Abstract

The embryonic axis is constructed by cells of the mesoderm of the developing embryo and interactions between mesoderm and ectoderm cells subsequently lead to the formation of neural elements whose structures also form in a strict rostro-caudal sequence. Axis formation within the mesoderm naturally falls into two parts: the generation of the mesoderm itself and the patterning of mesodermal elements to form the notochord and somites. Cellular interactions form an integral part of both these processes. This article considers the possible role of direct cell to cell communication through gap junctions during both phases of mesoderm generation. All the work described relates to events in the amphibian embryo, although it is likely that the basic elements of these events will have many points of similarity in all vertebrate species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, D., Turin, L. and Warner, A.E. 1983. Muscle activity and the loss of electrical coupling between striated muscle cells in Xenopus embryos. J. Neurosci 3:1414.

    PubMed  CAS  Google Scholar 

  • Blackshaw, S.E. and Warner, A.E. 1976a, Low resistance junctions between mesoderm cells during formation of trunk muscles, J. Physiol., 255: 209.

    PubMed  CAS  Google Scholar 

  • Blackshaw, S.E. and Warner, A.E. 1976b, Onset of acetylcholine sensitivity and endplate activity in developing myotomes of Xenopus, Nature, 292: 217.

    Article  Google Scholar 

  • Finbow, M.E., Shuttleworth, J., Hamilton, A.E. and Pitts, J.D. 1983, Analysis of vertebrate gap junction protein. EMBO J. 2:1486.

    Google Scholar 

  • Gimlich, R.L. and Gerhart, J.C. 1984, Early cellular interactions promote embryonic axis formation in Xenopus laevis. Devl. Biol. 104: 117.

    Article  CAS  Google Scholar 

  • Gurdon, J.B., Brennan, S., Fairman, S. and Mohun, T.J. 1984, Transcription of muscle-specific actin genes in early Xenopus development: nuclear transplantation and cell dissociation. Cell 38: 691.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J.B., Mohun, T.J., Brennan, S. and Cascio, S. 1985, Actin genes in Xenopus and their developmental control. J. Embryol. exp. Morph. 89 (Suppl):125.

    PubMed  Google Scholar 

  • Hamilton, L. 1969, The formation of somites in Xenopus. J. Embryol. exp. Morph, 22: 253.

    PubMed  CAS  Google Scholar 

  • Hertzberg, E.L. and Skibbens, R.V. 1984. A protein homolgous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues. Cell 39: 61.

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg, E.L., Spray, D.C. and Bennett, M.V.L. 1985. Reduction of gap junctional conductance by micro-injection of antibodies against the 27,000 dalton liver gap junction polypeptide. Proc. Natl. Acad. Sci. USA 82:2412.

    Article  PubMed  CAS  Google Scholar 

  • Keeter, J.S., Pappas, G.D. and Model, P. 1975, Inter-and intramyotomal gap junctions in the axolotl embryo. Devel. Biol 45: 21.

    Article  CAS  Google Scholar 

  • Kullberg, R.W., Lentz, T.L. and Cohen, M.W. 1977, Development of the myotomal neuromuscular junction in Xenopus laevis: An electrophysiological and fine structural study. Devel. Biol. 60: 101.

    Article  CAS  Google Scholar 

  • Mohun, T.J., Brennan, S., Dathan, N., Fairman, S. and Gurdon, J.B. 1984 Cell type-specific activation of actin genes in the early amphibian embryo. Nature 311:716.

    Article  PubMed  CAS  Google Scholar 

  • Muntz, L. 1964, Neuromuscular foundations of behaviour in embryonic and larval stages of the Anuran Xenopus laevis. Ph.D. Thesis, University of Bristol.

    Google Scholar 

  • Muntz, L. 1975, Myogenesis in the trunk and leg muscles during development of the tadpole of Xenopus laevis. J. Embryol. exp. Morph., 33: 757.

    PubMed  CAS  Google Scholar 

  • Nieuwkoop, P.D. 1969, The formation of the mesoderm in urodelean amphibians. Part 1, induction by the endoderm. Wilhelm Roux Archiv. 162:341.

    Article  Google Scholar 

  • Nieuwkoop, P.D. 1977, Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. Biol. 11:115.

    Article  PubMed  CAS  Google Scholar 

  • Paul, D. 1986, J. Cell Biol. In Press.

    Google Scholar 

  • Pitts, J.D. and Finbow M.E. 1986, The gap junction. J. Cell Sci. Suppl.4:239.

    Article  CAS  Google Scholar 

  • Roberts, A. 1969, Conducted impulses in the skin of young tadpoles. Nature, 222: 1265.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, T.D., Jaenisch, M. and Dawid, I. 1986, Cell interactions and the control of gene activity during early development of Xenopus laevis. Devel. Biol. 114:238.

    Article  CAS  Google Scholar 

  • Warner, A.E. 1985. The role of gap junctions during development of the early amphibian embryo. J. Embryol. exp. Morph. 89 (Suppl.):365.

    PubMed  Google Scholar 

  • Warner, A.E. 1986, The use of antibodies to gap junction protein to explore the role of gap junctional communication during development. In The junctional complexes of epithelial cells CIBA Foundation Symposium 125 (In Press).

    Google Scholar 

  • Warner, A.E., Guthrie, S.C. and Gilula, N.B. 1984, Antibodies to gap junction protein selectively disrupt junctional communication in the early amphibian embryo. Nature, 312: 127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Warner, A. (1986). The Pattern of Communication Through Gap Junctions During Formation of the Embryonic Axis. In: Bellairs, R., Ede, D.A., Lash, J.W. (eds) Somites in Developing Embryos. NATO ASI Series, vol 118. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2013-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2013-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2015-7

  • Online ISBN: 978-1-4899-2013-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics