Skip to main content

Transposable Elements

  • Chapter
The Gene

Abstract

Among the most exciting and informative events in the field of genetics was the discovery of elements that are moved relatively freely from one part of the genome to another. Characteristically these are highly repeated sequences in the DNA, a foretaste of which condition has already been provided in connection with the small heterogeneous RNA genes transcribed by DNA-dependent RNA polymerase III (Chapter 3, Section 3.4.1). While the specific genetic consequences of the Alu family discussed there are largely unknown, those transcribed by RNA polymerase II elaborated upon here have frequent and repeatable effects upon the expression of many genes. Indeed, their existence and influences in maize inheritance were reported many years prior to their final acceptance by molecular biologists (McClintock, 1949, 1951), an event that became general only after their DNA sequences made them undeniable realities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alton, N. K., and Vapnek, D. 1979. Nucleotide sequence analysis of the chloramphenicol resistance transposonTn 9.Nature (London) 282: 864–869.

    Article  CAS  Google Scholar 

  • Arkhipova, I. R., Gorelova, T. V., Alyin, Y. V., and Schuppe, N. G. 1984. Reverse transcription ofDrosophila mobile dispersed genetic element RNAs: Detection of intermediate forms.Nucleic Acids Res.12: 7533–7541.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, A., Nimmo, E., Hettle, S., and Sherratt, D. 1984. Transposition and transposition immunity of transposon Tn3 derivatives having different ends.EMBO J.3: 1723–1729.

    PubMed  CAS  Google Scholar 

  • Balmain, A., Frew, L., Cole, G., Krumlauf, R., Ritchie, A., and Birnie, G. D. 1982. Transcription of repeated sequences of the mouse B1 family in Friend erythroleukaemic cells.J. Mol. Biol. 160: 163–179.

    Article  PubMed  CAS  Google Scholar 

  • Baltimore, D. 1985. Retroviruses and retrotransposons. The role of reverse transcription in shaping the eukaryotic genome.Cell 40: 481–482.

    Article  PubMed  CAS  Google Scholar 

  • Barker, R. F., Thompson, D. V., Talbot, D. R., Swanson, J., and Bennetzen, L. 1984. Nucleotide sequence of the maize transposable elementMul. Nucleic Acids Res.12: 5955–5967.

    Article  CAS  Google Scholar 

  • Bayev, A. A., Lyubomirskaya, N. V., Dzhumagaliev, E. B., Ananiev, E. V., Amiantova, I. G., and Ilyin, Y. V. 1984. Structural organization of transposable elementmdg4 fromDrosophila melanogaster and a nucleotide sequence of its long terminal repeats.Nucleic Acids Res.12: 3707–3723.

    Article  PubMed  CAS  Google Scholar 

  • Belas, R., Mileham, A., Simon, M., and Silverman, M. 1984. Transposon mutagenesis of marineVibrio spp.J. Bacteriol. 158: 890–896.

    PubMed  CAS  Google Scholar 

  • Bell, J. R., Bogardus, A. M., Schmidt, T., and Pellegrini, M. 1985. A newcopia-like transposable element found in aDrosophila rDNA gene unit.Nucleic Acids Res.13: 3881–3891.

    Article  Google Scholar 

  • Bennett, P. M., Grinsted, J., Choi, C. L., and Richmond, M. H. 1978. Characterisation ofTn501, a transposon determining resistance to mercuric ions.Mol. Gen. Genet. 159: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Biel, S. W., Adelt, G., and Berg, D. E. 1984. Transcriptional control ofISI transposition inEscherichia coli. J. Mol. Biol.174: 251–264.

    Article  CAS  Google Scholar 

  • Boeke, J. D., Garfinkel, D. J., Styles, C. A., and Fink, G. R. 1985.Ty elements transpose through an RNA intermediate.Cell 40: 491–500.

    CAS  Google Scholar 

  • Bonas, U., Sommer, H., and Saedler, H. 1984. The 17-kbTaml element ofAntirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene.EMBO J.3: 1015–1019.

    PubMed  CAS  Google Scholar 

  • Bonnewell, V., Fowler, R. F., and Skinner, D. M. 1983. An inverted repeat borders a five-fold amplification in satellite DNA.Science 221: 862–865.

    Article  PubMed  CAS  Google Scholar 

  • Bourouis, M., and Richards, G. 1985. Remote regulatory sequences of theDrosophila glue genesgs3 as revealed by P-element transformation.Cell 40: 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Bregliano, J. C., and Kidwell, M. G. 1983. Hybrid dysgenesis determinants. In: Shapiro, J. A., ed..Mobile Genetic Elements, New York, Academic Press, pp. 363–410.

    Google Scholar 

  • Brierley, H. L., and Potter, S. S. 1985. Distinct characteristics of loop sequences of twoDrosophila foldback transposable elements.Nucleic Acids Res.13: 485–500.

    Article  PubMed  CAS  Google Scholar 

  • Brodeur, G. M., Sandmeyer, S. B., and Olson, M. V. 1983. Consistent association betweensigma elements and tRNA genes in yeast.Proc. Natl. Acad. Sci. USA 80: 3292–3296.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J., and Walz, A. 1982. DNA sequences flanking anE. coli insertion elementIS2 in a cloned yeastTRP5 gene.Gene 17: 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Brown, N. L., Choi, C. L., Grinsted, J., Richmond, M. H., and Whitehead, P. R. 1980. Nucleotide sequences at the ends of the mercury resistance transposon,Tn501. Nucleic Acids Res. 8: 1933–1945.

    Article  CAS  Google Scholar 

  • Brown, N. L., Ford, S. J., Pridmore, R. D., and Fritzinger, D. C. 1983. Nucleotide sequence of a gene from thePseudomonas transposonTn501 encoding mercuric reductase.Biochemistry 22: 4089–4095.

    Article  PubMed  CAS  Google Scholar 

  • Calos, M. P., and Miller, J. H. 1980. Transposable elements.Cell 20: 579–595.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, J. R. 1979. Evidence for transposition of dispersed repetitive DNA families in yeast.Cell 16: 739–751.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, J. R., Loh, E. Y., and Davis, R. W. 1979. Evidence for transposition of dispersed repetitive DNA families in yeast.Cell 16: 739–751.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, C. D., Bruskin, A. M., Spain, L. M., Eldon, E. D., and Klein, W. H. 1982. The 3’ untranslated regions of two related mRNAs contain an element highly repeated in the sea urchin genome.Nucleic Acids Res.10: 7829–7842.

    Article  PubMed  CAS  Google Scholar 

  • Case, S. T., and Byers, M. R. 1983. Repeated nucleotide sequence arrays in Balbiani ring 1 ofChironomus tentans contain internally nonrepeating and subrepeating elements.J. Biol. Chem. 258: 7793–7799.

    PubMed  CAS  Google Scholar 

  • Case, S. T., Summers, R. L., and Jones, A. G. 1983. A variant tandemly repeated nucleotide sequence in Balbiani ring 2 ofChironomus tentans. Cell 33: 555–562.

    Article  CAS  Google Scholar 

  • Caspers, P., Dalrymple, B., Iida, S., and Arber, W. 1984. IS30, a new insertion sequence ofEscherichia coli K12.Mol. Gen. Genet. 196: 68–73.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, G. E., Genbauffe, F. S., and Cooper, T. G. 1984.tau, a repeated DNA sequence in yeast.Proc. Natl. Acad. Sci. USA 81: 2965–2969.

    Google Scholar 

  • Clare, J., and Farabaugh, P. 1985. Nucleotide sequence of a yeast Ty element: Evidence for an unusual mechanism of gene expression.Proc. Natl. Acad. Sci. USA 82: 2829–2833.

    Article  PubMed  CAS  Google Scholar 

  • Clerget, M., Chandler, M., and Caro, L. 1981. The structure of Rldrdl9: A revised physical map of the plasmid.Mol. Gen. Genet. 181: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Collins, M., and Rubin, G. M. 1984. Structure of chromosomal rearrangements induced by the FB transposable element inDrosophila. Nature (London) 308: 323–327.

    Article  CAS  Google Scholar 

  • Courage-Tebbe, U., Döring, H. P., Federoff, N., and Starlinger, P. 1983. The controlling elementDs at theShrunken locus inZea mays: Structure of the unstablesh-m5933 allele and several revertants.Cell 34: 383393.

    Google Scholar 

  • Dalrymple, B., Caspers, P., and Arber, W. 1984. Nucleotide sequence of the prokaryotic genetic element IS30.EMBO J.3: 2145–2149.

    PubMed  CAS  Google Scholar 

  • Cruz, F., and Grinsted, J. 1982. Genetic and molecular characterization of Tn21; A multiple resistance transposon from R100.1.J. Bacteriol. 151: 222–228.

    PubMed  Google Scholar 

  • Rey, F. J., Donahue, T. F., and Fink, G. R. 1982.Sigma, a repetitive element found adjacent to tRNA genes of yeast.Proc. Natl. Acad. Sci. USA 79: 4138–4142.

    Article  Google Scholar 

  • Dennis, E. S., Sachs, M. M., Gerlach, W. L., Finnegan, E. J., and Peacock, W. J. 1985. Molecular analysis of the alcohol dehydrogenase 2(Adh2) gene of maize.Nucleic Acids Res.13: 727–743.

    Article  PubMed  CAS  Google Scholar 

  • Dillon, L. S. 1978.The Genetic Mechanism and the Origin of Life, New York, Plenum Press.

    Google Scholar 

  • Nocera, P. P., Digon, M. E., and Dawid, I. B. 1983. A family of oligoadenylate-terminated transposable sequences inDrosophila melanogaster. J. Mol. Biol.168: 715–727.

    Article  Google Scholar 

  • Diver, W. P., Grinsted, J., Fritzinger, D. C., Brown, N. L., Altenbuchner, J., Rogousky, P., and Schmitt, R. 1983. DNA sequences and complementation by thetnpR genes of Tn21,Tn501, andTn1721. Mol. Gen. Genet. 191: 189–193.

    Article  CAS  Google Scholar 

  • Döring, H. P., and Starlinger, P. 1984. Barbara McClintock’s controlling elements: Now at the DNA level.Cell 39: 253–259.

    Article  PubMed  Google Scholar 

  • Eibel, H., Gafner, J., Stotz, A., and Philippsen, P. 1980. Characterization of the yeast mobile elementTyl. Cold Spring Harbor Symp. Quant. Biol.45: 609–618.

    Article  Google Scholar 

  • Elder, R. T., Loh, E. Y., and Davis, R. W. 1983. RNA from the yeast transposable elementTyl has both ends in the direct repeats, a structure similar to retrovirus.Proc. Natl. Acad. Sci. USA 80: 2432–2436.

    Article  PubMed  CAS  Google Scholar 

  • Engler, J. A., and van Bree, M. P. 1981. The nucleotide sequence and protein-coding capability of the transposable element IS5. Gene14: 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh, P. J., and Fink, G. R. 1980. Insertion of the eukaryotic transposable elementTyl creates a 5-base pair duplication.Nature (London) 286: 352–356.

    Article  CAS  Google Scholar 

  • Feagin, J. E., Setzer, D. R., and Schimke, R. T. 1983. A family of repeated sequences, one of which resides in the second intervening sequence of the mouse dihydrofolate reductase gene.J. Biol. Chem. 258: 2480 2487.

    Google Scholar 

  • Flavell, A. J., Levis, R., Simon, M. A., and Rubin, G. M. 1981. The 5’ termini of RNAs encoded by the transposable elementcopia. Nucleic Acids Res.9: 6279–6291.

    Article  CAS  Google Scholar 

  • Fulton, A. M., Mellor, J., Dobson, M. J., Chester, J., Warmington, J. R., Indge, K. J., Oliver, S. G., de la Paz, P., Wilson, W., Kingsman, A. J., and Kingsman, S. M. 1985. Variants within the yeastTy sequence family encode a class of structurally conserved proteins.Nucleic Acids Res.13: 4097–4112.

    Article  PubMed  CAS  Google Scholar 

  • Gafner, J., and Philippsen, P. 1980. The yeast transposonTyl generates duplications of target DNA on insertion.Nature (London) 286: 414–418.

    Article  CAS  Google Scholar 

  • Galas, D. J., Calos, M. P., and Miller, J. H. 1980. Sequence analysis ofTn9 insertions in thelacZ gene.J. Mol. Biol. 144: 19–41.

    Article  PubMed  CAS  Google Scholar 

  • Gebhard, W., and Zachau, H. G. 1983a. Organization of the R family and other interspersed repetitive DNA sequences in the mouse genome.J. Mol. Biol. 170: 255–270.

    Article  PubMed  CAS  Google Scholar 

  • Gebhard, W., and Zachau, H. G. 19836. Simple DNA sequences and dispersed repetitive elements in the vicinity of mouse immunoglobulin K light chain genes.J. Mol. Biol. 170: 567–573.

    Google Scholar 

  • Gebhard, W., Meitinger, T., Höchtl, J., and Zachau, H. G. 1982. A new family of interspersed repetitive DNA sequences in the mouse genome.J. Mol. Biol. 157: 453–471.

    Article  PubMed  CAS  Google Scholar 

  • Genbauffe, F. S., Chisholm, G. E., and Cooper, T. G. 1984. Tau, sigma, and delta: A family of repeated elements in yeast.J. Biol. Chem. 259: 10518–10523.

    PubMed  CAS  Google Scholar 

  • Gielen, J., De Beuckeleer, M., Seurinck, J., Deboeck, F., Greve, H., Lemmers, M., Van Montagu, M., and Schell, J. 1984. The complete nucleotide sequence of the TL-DNA of theAgrobacterium tumefaciens plasmid pTiAch5.EMBO J.3: 835–846.

    PubMed  CAS  Google Scholar 

  • Gierl, A., Schwarz-Sommer, Z., and Saedler, H. 1985. Molecular interactions between the components of the En-I transposable element system ofZea mays. EMBO J.4: 579–583.

    CAS  Google Scholar 

  • Grimaldi, G., and Singer, M. F. 1983. Members of theKpnl family of long interspersed repeated sequences join and interrupt a-satellite in the monkey genome.Nucleic Acids Res.11: 321–338.

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi, G., Skowronski, J., and Singer, M. F. 1984. Defining the beginning and end ofKpnl family segments.EMBO J.3: 1753–1759.

    PubMed  CAS  Google Scholar 

  • Grindley, N. D. F. 1983. Transposition ofTn3 and related transposons.Cell 32: 3–5.

    Article  PubMed  CAS  Google Scholar 

  • Grinsted, J., and Brown, N. L. 1984. ATn21 terminal sequence withinTn501: Complementation ofTnpA gene function and transposon evolution.Mol. Gen. Genet. 197: 497–502.

    Article  PubMed  CAS  Google Scholar 

  • Hardison, R. C., and Printz, R. 1985. Variability within the rabbit C repeats and sequences shared with other SINES.Nucleic Acids Res.13: 1073–1088.

    Article  PubMed  CAS  Google Scholar 

  • Hauber, J., Nelböck-Hochstetter, P., and Feldmann, H. 1985. Nucleotide sequence and characteristics of a Ty element from yeast.Nucleic Acids Res.13: 2745–2758.

    Article  PubMed  CAS  Google Scholar 

  • Hauer, B., and Shapiro, J. A. 1984. Control of Tn7 transposition.Mol. Gen. Genet. 194: 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Hazelrigg, T., Levis, R., and Rubin, G. M. 1984. Transformation ofwhite locus DNA inDrosophila: Dosage compensation, zeste interaction, and position effects.Cell 36: 469–481.

    Article  PubMed  CAS  Google Scholar 

  • Heffron, F., McCarthy, B. J., Ohtsubo, H., and Ohtsubo, E. 1979. DNA sequence analysis of the transposonTn3: Three ‘genes and three sites involved in transposition ofTn3. Cell 18: 1153–1163.

    Article  CAS  Google Scholar 

  • Hinton, D. M., and Musso, R. E. 1983. Specificin vitro transcription of the insertion sequence152. J. Mol. Biol.169: 53–81.

    Article  CAS  Google Scholar 

  • Höög, C., and Wieslander, L. 1984. Different evolutionary behavior of structurally related, repetitive sequences occurring in the same Balbiani ring gene inChironomus tentons. Proc. Natl. Acad. Sci. USA 81: 5165–5169.

    Article  Google Scholar 

  • Hummel, S., Meyerhof, W., Korge, E., and Knöchel, W. 1984. Characterization of highly and moderately repetitive 500 bpEco R1 fragments fromXenopus laevis DNA.Nucleic Acids Res.12: 4921–4938.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, D. R., and Tu, C. P. D. 1982. Insertion sites and the terminal nucleotide sequences of the Tn4 transposon.Nucleic Acids Res.10: 3981–3993.

    Article  PubMed  CAS  Google Scholar 

  • Iida, S., Marcoli, R., and Bickle, T. A. 1981. Variant insertion elementIS! generates 8-base pair duplications of the target sequence.Nature (London) 294: 374–376.

    Article  CAS  Google Scholar 

  • Iida, S., Meyer, J., and Arber, W. 1983. ProkaryoticIS elements. In: Shapiro, J. A., ed.,Mobile Genetic Elements, New York, Academic Press, pp. 159–221.

    Google Scholar 

  • Iida, S., Mollet, B., Meyer, J., and Arber, W. 1984. Functional characterization of the prokaryotic mobile genetic element1S26. Mol. Gen. Genet.198: 84–89.

    Article  CAS  Google Scholar 

  • Iida, S., Hiestand-Nauer, R., and Arber, W. 1985. Transposable elementIS! intrinsically generates target duplications of variable length.Proc. Natl. Acad. Sci. USA 82: 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Ikenaga, H., and Saigo, K. 1982. Insertion of a movable element,297, into the T-A-T-A box for theH3 histone gene inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 79: 4143–4147.

    Article  CAS  Google Scholar 

  • Isberg, R. R., and Syvanen, M. 1985.Tn5 transposes independently of cointegrate resolution. Evidence for an alternative model of transposition.J. Mol. Biol. 182: 69–78.

    CAS  Google Scholar 

  • Johns, M. A., Mottinger, J., and Freeling, M. 1985. A low copy number,copia-like transposon in maize.EMBO J.4: 1093–1102.

    PubMed  CAS  Google Scholar 

  • Johnson, R. C., and Reznikoff, W. S. 1983. DNA sequences at the ends of transposonTn5 required for transposition.Nature (London) 304: 280–282.

    Article  CAS  Google Scholar 

  • Johnson, R. C., and Reznikoff, W. S. 1984. Role of the ISSOR proteins in the promotion and control ofTn5 transposition.J. Mol. Biol. 177: 645–661.

    Article  PubMed  CAS  Google Scholar 

  • Johnsrud, L., Calos, M. P., and Miller, J. H. 1978. The transposonTn9 generates a 9 bp repeated sequence during integration.Cell 15: 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, H., Kiyasu, T., Noumi, T., Futai, M., and Yamaguchi, K. 1984. Insertions of transposable elements in the promoter proximal region of the gene cluster forEscherichia coli H ± -ATPase: 8 base pair repeat generated by insertion of IS 1.Mol. Gen. Genet. 194: 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Karess, R. E., and Rubin, G. M. 1984. Analysis of P transposable element functions inDrosophila. Cell 38: 135–146.

    Article  CAS  Google Scholar 

  • Karlik, C. C., and Fyrberg, E. A. 1985. An insertion within a variably splicedDrosophila tropomyosin gene blocks accumulation of only one encoded isoform.Cell 41: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Kingsman, A. J., Gimlich, R. L., Clarke, L., Chinault, A. C., and Carbon, J. 1981. Sequence variation in dispersed repetitive sequences inSaccharomyces cerevisiae. J. Mol. Biol.145: 619–632.

    Article  CAS  Google Scholar 

  • Klaer, R., Kühn, S., Tillmann, E., Fritz, H. J., and Starlinger, P. 1981. The sequence ofIS4. Mol. Gen. Genet. 181: 169–175.

    Article  CAS  Google Scholar 

  • Kleckner, N. 1979. DNA sequence analysis ofTn10 insertions: Origins and role of 9 bp flanking repetitions duringTn10 translocation.Cell 16: 711–720.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N. 1981. Transposable elements in prokaryotes.Annu. Rev. Genet. 15: 341–404.

    Article  PubMed  CAS  Google Scholar 

  • Krayev, A. S., Kramerov, D. A., Skryabin, K. G., Ryskov, A. P., Bayev, A. A., and Georgiev, G. P. 1980. The nucleotide sequence of the ubiquitous repetitive DNA sequence B 1 complementary to the most abundant class of mouse fold-back RNA. Nucleic Acids Res.8: 1201–1215.

    Article  PubMed  CAS  Google Scholar 

  • Krayev, A. S., Markusheva, T. V., Kramerov, D. A., Ryskov, A. P., Skryabin, K. G., Bayev, A. A., and Georgiev, G. P. 1982. Ubiquitous transposon-like repeats B 1 and B2 of the mouse genome: B2 sequencing.Nucleic Acids Res.10: 7461–7475.

    Article  PubMed  CAS  Google Scholar 

  • Kuehn, M., and Arnheim, N. 1983. Nucleotide sequence of the genetically labile repeated elements 5’ to the origin of mouse rRNA transcription.Nucleic Acids Res.11: 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Lam, B. S., and Carroll, D. 1983. Tandemly repeated sequences fromXenopus laevis. II. Dispersed clusters of a 388 base-pair repeating unit.J. Mol. Biol. 165: 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Lendahl, U., and Wieslander, L. 1984. Balbiani ring 6 gene inChironomus tentans: A diverged member of the Balbiani ring gene family.Cell 36: 1027–1034.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, C., and Brenner, S. 1982. Unique insertion site ofTn7 in theE. coli chromosome.Nature (London) 297: 601–603.

    Article  CAS  Google Scholar 

  • Lupski, J. R., Gershon, P., Ozaki, L. S., and Godson, G. N. 1984. Specificity ofTn5 insertions into a 36-bp DNA sequence repeated in tandem seven times.Gene 30: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Machida, C., Machida, Y., Wang, H. C., Ishizaki, K., and Ohtsubo, E. 1983. Repression of cointegration ability of insertion element/SI by transcriptional readthrough from flanking regions.Cell 34: 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Machida, C., Machida, Y., and Ohtsubo, E. 1984a. Both inverted repeat sequences located at the ends of IS] provide promoter functions.J. Mol. Biol. 177: 247–267.

    Article  PubMed  CAS  Google Scholar 

  • Machida, Y., Machida, C., and Ohtsubo, E. 1984b. Insertion elementISI encodes two structural genes required for its transposition.J. Mol. Biol. 177: 229–245.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S. L., Voliva, C. F., Burton, F. H., Edgell, M. H., and Hutchison, C. A. 1984. A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein.Proc. Natl. Acad. Sci. USA 81: 2308–2312.

    Article  PubMed  CAS  Google Scholar 

  • Mayaux, J. F., Springer, M., Graffe, M., Fromant, M., and Fayat, G. 1984.154 transposition in the attenuator region of theEscherichia coli pheS,T operon.Gene 30: 137–146.

    Google Scholar 

  • Mazodier, P., Giraud, E., and Gasser, F. 1983. Genetic analysis of the streptomycin resistance encoded byTn5. Mol. Gen. Genet.192: 155–162.

    Article  CAS  Google Scholar 

  • Mazodier, P., Cossart, P., Giraud, E., and Gasser, F. 1985. Completion of the nucleotide sequence of the central region ofTn5 confirms the presence of three resistance genes.Nucleic Acids Res.13: 195–205.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. 1949. Mutable loci in maize.Carnegie Inst. Wash. Year Book 48: 142–154.

    Google Scholar 

  • McClintock, B. 1951. Chromosome organization and genic expression.Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. 1954. Mutations in maize and chromosomal aberrations inNeurospora. Carnegie Inst. Wash. Year Book 53: 254–260.

    Google Scholar 

  • McCormick, M., and Ohtsubo, E. 1985. Cointegrates carrying two copies of aTn3 derivative in an inverted orientation.Gene 34: 197–206.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis, W., Shermoen, A. W., and Beckendorf, S. K. 1983. A transposable element inserted just 5’ toa Drosophila glue protein gene alters gene expression and chromatin structure.Cell 34: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Michiels, T., and Cornelis, G. 1984. Detection and characterization ofTn2501, a transposon included within the lactose transposonTn951. J. Bacteriol.158: 866–871.

    CAS  Google Scholar 

  • Misra, T. K., Brown, N. L.. Fritzinger, D. C., Pridmore, R. D., Barnes, W. M., Haberstroh, L., and Silver, S. 1984. Mercuric ion-resistance operons of plasmid R100 and transposonTn501: The beginning of the operon including the regulatory region and the first two structural genes.Proc. Natl. Acad. Sci. USA 81: 5975–5979.

    CAS  Google Scholar 

  • Misra, T. K., Brown, N. L., Haberstroh, L., Schmidt, A., Goddette, D., and Silver, S. 1985. Mercuric reductase structural genes from plasmid R100 and transposonTn501: Functional domains of the enzyme.Gene 34: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Mollet, B., Iida, S., Shepherd, J., and Arber, W. 1983. Nucleotide sequence ofIS26, a new prokaryotic mobile genetic element.Nucleic Acids Res.11: 6319–6330.

    Article  PubMed  CAS  Google Scholar 

  • Mollet, B., Clerget, M., Meyer, J., and Iida, S. 1985. Organization of the Tn6-related kanamycin resistance transposonTn2680 carrying two copies ofIS26 and anIS903 variant,IS903B. J. Bacteriol. 163: 55–60.

    CAS  Google Scholar 

  • Morisato, D., and Kleckner, N. 1984. Transposase promotes double strand breaks and single strand joints atTnlO terminiin vivo. Cell 39: 181–190.

    Article  CAS  Google Scholar 

  • Mossie, K. G., Young, M. W., and Varmus, H. E. 1985. Extrachromosomal DNA forms ofcopia-like transposable elements, F elements and middle repetitive DNA sequences inDrosophila melanogaster. J. Mol. Biol.182: 31–43.

    Article  CAS  Google Scholar 

  • Müller-Neumann, M., Yoder, J. I., and Starlinger, P. 1984. The DNA sequence of the transposable elementAc ofZea mays L.Mol. Gen. Genet. 198: 19–24.

    Article  Google Scholar 

  • Nag, D. K., Das Gupta, U., Adelt, G., and Berg, D. E. 1985. 1S50-mediated inverse transposition: Specificity and precision.Gene 34: 17–26.

    Google Scholar 

  • Navas, J., Garcia-Lobo, J. M., Léon, J., and Orttz, J. M. 1985. Structural and functional analyses of the fosfomycin resistance transposonTn2921. J. Bacteriol.162: 1061–1067.

    CAS  Google Scholar 

  • Newman, B. J., and Grindley, N. D. F. 1984. Mutants of the-y resolvase: A genetic analysis of the recombination function.Cell 38: 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Nomiyama, H., Tsuzuki, T, Wakasugi, S., Fukuda, M., and Shimada, K. 1984. Interruption of a human nuclear sequence homologous to mitochondrial DNA by a member of the Kpnl 1.8 kb family. Nucleic Acids Res.12: 5225–5234.

    CAS  Google Scholar 

  • O’Hare, K., and Rubin, G. M. 1983. Structures ofP transposable elements and their sites of insertion and excision in theDrosophila melanogaster genome.Cell 34: 25–35.

    Article  PubMed  Google Scholar 

  • Ohta, N., Swanson, E., Ely, B., and Newton, A. 1984. Physical mapping and complementation analysis of transposonTn5 mutations inCaulobacter crescentus: Organization of transcriptional units in the hook gene cluster.J. Bacteriol. 158: 897–904.

    PubMed  CAS  Google Scholar 

  • Ohtsubo, H., and Ohtsubo, E. 1978. Nucleotide sequence of an insertion element,ISI. Proc. Natl. Acad. Sci. USA 75: 615–619.

    Article  CAS  Google Scholar 

  • Oka, A., Nomura, N., Sugimoto, K., Sugisaki, H., and Takanami, M. 1978. Nucleotide sequence at the insertion sites of a kanamycin transposon.Nature (London) 276: 845–847.

    Article  CAS  Google Scholar 

  • Ouartsi, A., Borowski, D., and Brevet, J. 1985. Genetic analysis ofTn7 transposition.Mol. Gen. Genet. 198: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, A., Schwarz-Sommer, Z., Gierl, A., Bertram, I., Peterson, P. A., and Saedler, H. 1985. Genetic and molecular analysis of the Enhancer(En) transposable element system ofZea mays. EMBO J.4: 17–23.

    CAS  Google Scholar 

  • Peterson, P. A. 1953. A mutable pale green locus in maize.Genetics 38: 682–683.

    Google Scholar 

  • Peterson, P. A. 1965. A relationship between theSpm andEn control systems in maize.Am. Nat. 99:391–398. Pohlman, R. F., Fedoroff, N. V., and Messing, J. 1984. The nucleotide sequence of the maize controlling elementactivator. Cell 37: 635–643.

    Google Scholar 

  • Potter, S. S. 1982. DNA sequence of a foldback transposable element Drosophila Nature (London)297: 201–204.

    CAS  Google Scholar 

  • Potter, S. S. 1984. Rearranged sequences of a humanKpnl element.Proc. Natl. Acad. Sci. USA 81: 1012–1016.

    Article  PubMed  CAS  Google Scholar 

  • Propst, F., and Vande Woude, G. F. 1984. A novel transposon-like repeat interrupted by an LTR element occurs in a cluster ofB1 repeats in the mouseC-mos locus.Nucleic Acids Res.12: 8381–8392.

    Article  PubMed  CAS  Google Scholar 

  • Putnoky, P., Kiss, G. B., Ott, I., and Kondorosi, A. 1983. Tn5 carries a streptomycin resistance determinant downstream from the kanamycin resistance gene.Mol. Gen. Genet. 191: 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Rak, B., and von Reutern, M. 1984. Insertion element1S5 contains a third gene.EMBO J.3: 807–811.

    PubMed  CAS  Google Scholar 

  • Reed, R. R., Shibuya, G. I., and Steitz, J. A. 1982. Nucleotide sequence of yS resolvase gene and demonstration that its gene product acts as a repressor of transcription.Nature (London) 300: 381–383.

    Article  CAS  Google Scholar 

  • Robertson, D. S. 1978. Characterization of a mutator system in maize.Mutat. Res. 51: 21–28.

    Article  Google Scholar 

  • Rostas, K., Sista, P. R., Stanley, J., and Verma, D. P. S. 1984. Transposon mutagenesis ofRhizobium japonicum. Mol. Gen. Genet.197: 230–235.

    Article  CAS  Google Scholar 

  • Rubin, G. M., Brorein, W. J., Dunsmuir, P., Flavell, A. J., Levis, R., Strobel, E., Took, J. J., and Young, E. 1980.Copia-like transposable elements in theDrosophila genome.Cold Spring Harbor Symp. Quant. Biol. 45: 619–628.

    Article  Google Scholar 

  • Saedler, H., and Nevers, P. 1985. Transposition in plants: A molecular model.EMBO J.4: 585–590.

    PubMed  CAS  Google Scholar 

  • Sagata, N., Yasunaga, T., Ogawa, Y., Tsuzuku-Kawamura, J., and Ikawa, Y. 1984. Bovine leukemia virus: Unique structural features of its long terminal repeats and its evolutionary relationship to human T-cell leukemia virus.Proc. Natl. Acad. Sci. USA 81: 4741–4745.

    Article  PubMed  CAS  Google Scholar 

  • Saiga, H., and Edström, J. E. 1985. Long tandem arrays of complex repeat units inChironomus telomeres.EMBO J.4: 799–804.

    PubMed  CAS  Google Scholar 

  • Saigo, K., Kugimiya, W., Matsuo, Y., Inouye, S., Yoshioka, K., and Yuki, S. 1984. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element inDrosophila melanogaster. Nature (London) 312: 659–661.

    Article  CAS  Google Scholar 

  • Sandmeyer, S. B., and Olson, M. V. 1982. Insertion of a repetitive element at the same position in the 5’ flanking regions of two dissimilar yeast tRNA genes.Proc. Natl. Acad. Sci. USA 79: 7674–7678.

    Article  PubMed  CAS  Google Scholar 

  • Sasakawa, C., Carle, G. F., and Berg, D. E. 1983. Sequences essential for transposition at the termini of1S50. Proc. Natl. Acad. Sci. USA 80: 7293–7297.

    Article  CAS  Google Scholar 

  • Sasakawa, C., Phadnis, S. H., Carle, G. F., and Berg, D. E. 1985. Sequences essential for1S50 transposition. The first base-pair.J. Mol. Biol. 182: 487–493.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, G., Tschudi, C., Perera, J., Delius, H., and Pirrotta, V. 1982.B104, a new dispersed repeated gene family inDrosophila melanogaster and its analogies with retroviruses.J. Mol. Biol. 157: 435–451.

    CAS  Google Scholar 

  • Schindler, C. W., and Rush, M. G. 1985. TheKpnl family of long interspersed nucleotide sequences is present on discrete sizes of circular DNA in monkey (BSC-1) cells.J. Mol. Biol. 181: 161–173.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, E. R. 1984. Clustered and interspersed repetitive DNA sequence family ofChironomus. The nucleotide sequence of the Cla-elements and of the various flanking sequences.J. Mol. Biol. 178: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Schnabel, H., Palm, P., Dick, K., and Grampp, B. 1984. Sequence analysis of the insertion elementISH1.8 and of associated structural changes in the genome of phage 4H of the archaebacteriumHalobacterium halobium. EMBO J.3: 1717–1722.

    CAS  Google Scholar 

  • Schöffl, F., Arnold, W., Piihler, A., Altenbuchner, J., and Schmitt, R. 1981. The tetracycline resistance transposonsTn1721 andTn1771 have three 38 base-pair repeats and generate five base-pair direct repeats.Mol. Gen. Genet. 181: 87–94.

    Article  PubMed  Google Scholar 

  • Schollmeier, K., Gärtner, D., and Hillen, W. 1985. A bidirectionally active signal for termination of transcription is located betweentetA andorfh on transposonTn10. Nucleic Acids Res.13: 4227–4237.

    Article  CAS  Google Scholar 

  • Schoner, B., and Kahn, M. 1981. The nucleotide sequence of1S5 fromEscherichia coli. Gene 14: 165–174.

    CAS  Google Scholar 

  • Schwarz-Sommer, Z., Gierl, A., Klösgen, R. B., Wienaud, U., Peterson, P. A., and Saedler, H. 1984. TheSpm (En) transposable element controls the excision of a 2-kb DNA insert at thewx° 1-8 allele ofZea mays. EMBO J.3: 1021–1028.

    CAS  Google Scholar 

  • Schwarz-Sommer, Z., Gierl, A., Cuypers, H., Peterson, P. A., and Saedler, H. 1985. Plant transposable elements generate the DNA sequence diversity needed in evolution.EMBO J.4: 591–597.

    PubMed  CAS  Google Scholar 

  • Shepherd, B. M., and Finnegan, D. J. 1984. Structure of circular copies of the412 transposable element present inDrosophila melanogaster tissue culture cells, and isolation of a free412 long-terminal repeat.J. Mol. Biol. 180: 21–40.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, Y., Yoshida, K., Ren, C. S., Fujinaga, K., Rajagopalan, S., and Chinnadurai, G. 1983.Hinf family: A novel repeated DNA family of the human genome.Nature (London) 302: 587–590.

    CAS  Google Scholar 

  • Simsek, M., Das Sarma, S., RajBhandary, U. L., and Khorana, H. G. 1982. A transposable element fromHalobacterium halobium which inactivates the bacteriorhodopsin gene.Proc. Natl. Acad. Sci. USA 79: 7268–7272.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M. F. 1982. SINEs and LINEs: Highly repeated short and long interspersed sequences in mammalian genomes.Cell 28: 433–434.

    Article  PubMed  CAS  Google Scholar 

  • Stanisich, V. A., Bennett, P. M., and Richmond, M. H. 1977. Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid inPseudomonas aeroginosa. J. Bacteriol.129: 1227–1233.

    CAS  Google Scholar 

  • Steller, H., and Pirrotta, V. 1985. A transposable P vector that confers selectable G418 resistance toDrosophila larvae.EMBO J.4: 167–171.

    PubMed  CAS  Google Scholar 

  • Stumph, W. E., Hodgson, C. P., Tsai, M. J., and O’Malley, B. W. 1984. Genomic structure and possible retroviral origin of the chickenCR1 repetitive DNA sequence family.Proc. Natl. Acad. Sci. USA 81: 6667–6671.

    Article  PubMed  CAS  Google Scholar 

  • Sümegi, J., Wieslander, L., and Daneholt, B. 1982. A hierarchic arrangement of the repetitive sequences in the Balbiani ring 2 ofChironomus tentans. Cell 30: 579–587.

    Article  Google Scholar 

  • Sun, L., Paulson, K. E., Schmid, C. W., Kadyk, L., and Leinwand, L. 1984. Non-Mu family interspersed repeats in human DNA and their transcriptional activity.Nucleic Acids Res.12: 2669–2690.

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe, J. G., Milner, R. J., Bloom, F. E., and Lerner. R. A. 1982. Common 82-nucleotide sequence unique to brain RNA.Proc. Natl. Acad. Sci. USA 79: 4942–4946.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, W. D., Gerlach, W. L., Schwartz, D., and Peacock, W. J. 1984. Molecular analysis ofDs controlling element mutations at theAdhl locus of maize.Science 223: 1265–1268.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, A. K. W., Ciriacy, M., and Young, E. T. 1984. Carbon source dependence of transposable element-associated gene activation inSaccharomyces cerevisiae. Mol. Cell. Biol.4: 61–68.

    CAS  Google Scholar 

  • Taylor, L. P., and Walbot, V. 1985. A deletion adjacent to the maize transposable elementMu-1 accompanies loss ofAdhl expression.EMBO J.4: 869–876.

    PubMed  CAS  Google Scholar 

  • Thorpe, P. A., and Clowes, R. C. 1984. Absence of direct repeats flanking transposons resulting from intramolecular transposition.Gene 28: 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Timmerman, K. P., and Tu, C. P. D. 1985. Complete sequence ofIS3. Nucleic Acids Res.13: 2127–2139.

    Article  CAS  Google Scholar 

  • Trieu-Cuot, P., and Courvalin, P. 1984. Nucleotide sequence of the transposable elementISIS. Gene 30: 113–120.

    CAS  Google Scholar 

  • Trieu-Cuot, P., Labigne-Roussel, A., and Courvalin, P. 1983. AnISIS insertion generates an eight base-pair duplication of the target DNA.Gene 24: 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman, S. A., Dungan, J. M., and Cozzarelli, N. R. 1985. Discovery of a predicted DNA knot substantiates a model for site-specific recombination.Science 229: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Weck, E., Courage, U., Döring, H. P., Federoff, N., and Starlinger, P. 1984. Analysis ofsh-m6233, a mutation induced by the transposable elementDs in the sucrose synthase gene ofZea mays. EMBO J.3: 1713–1716.

    CAS  Google Scholar 

  • Wharton, K. A., Yedvobnick, B., Finnerty, V. G., and Artavanis-Tsakonas, S. 1985.Opa: A novel family of transcribed repeats shared by thenotch locus and other developmentally regulated loci inD. melanogaster. Cell 40: 55–82.

    CAS  Google Scholar 

  • Williamson, V. M. 1983. Transposable elements in yeast.Int. Rev. Cytol. 83: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R., and Storb, U. 1983. Association of two different repetitive DNA elements near immunoglobulin light chain genes.Nucleic Acids Res.11: 1803–1817.

    Article  PubMed  CAS  Google Scholar 

  • Winston, F., Durbin, K. J., and Fink, G. R. 1984. TheSPT3 gene is required for normal transcription ofTy elements inS. cerevisiae. Cell 39: 675–682.

    CAS  Google Scholar 

  • Wirth, T., Glöggler, K., Baumruker, T., Schmidt, M., and Horak, I. 1983. Family of middle repetitive DNA sequences in the mouse genome with structural features of solitary retroviral long terminal repeats.Proc. Natl. Acad. Sci. USA 80: 3327–3330.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, W. L., Machida, C., Ohtsubo, H., and Ohtsubo, E. 1983.Escherichia coli RNA polymerase binding sites and transcription initiation sites in the transposonTn3. Gene 24: 99–113.

    CAS  Google Scholar 

  • Zheng, Z. X., Chandler, M., Hipskind, R., Clerget, M., and Caro, L. 1981. Dissection of the r-determinant of the plasmid RI00.1: The sequence at the extremities ofTn21. Nucleic Acids Res.9: 6265–6276.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillon, L.S. (1987). Transposable Elements. In: The Gene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2007-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2007-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2009-6

  • Online ISBN: 978-1-4899-2007-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics