Skip to main content
Book cover

The Gene pp 93–143Cite as

The 5 S Ribosomal and Other Small RNAs

  • Chapter
  • 539 Accesses

Abstract

The second large category of substances transcribed in eukaryotes by DNA-dependent RNA polymerase III, in spite of the vast literature embracing it, is not nearly so satisfactory for discussions of gene structure as are the tRNA genes. Not that there is any paucity of sequencing studies; quite to the contrary, 5 S rRNA primary structures are probably more abundantly established than any other single species of macromolecule. More than 36 have been determined from eubacterial sources, 8 from archaebacterial ones, nearly 125 from eukaryotic cytoplasm, and 7 from eukaryotic organelles (Erdmann et al., 1984). Their lack of favorableness stems from two factors. The first of these, the cotranscription in prokaryotes of 5 S rRNA genes with the minor and major rRNA species, restricts the effectiveness of the comparative approach to transcription promoters nearly entirely to eukaryotes. The second factor is that, despite the numerous sequence studies, the genes of 5 S rRNAs remain relatively poorly explored, for the great majority of research has focused on the structure of the transcription product, not upon the gene itself.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akusjärvi, G., Mathews, M. B., Anderson, P., Vennström, B., and Pettersson, U. 1980. Structure of genes for virus-associated RNA’ and RNA1 of adenovirus type 2.Proc. Natl. Acad. Sci. USA 77: 2424–2428.

    Article  PubMed  Google Scholar 

  • Allan, M., and Paul, J. 1984. Transcriptionin vivo of anAlu family member upstream from the human e-globin gene.Nucleic Acids Res.12: 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Allan, M., Lanyon, W. G., and Paul, J. 1983. Multiple origins of transcription in the 4.5 kb upstream of the eglobin gene.Cell 35: 187–197.

    Article  PubMed  CAS  Google Scholar 

  • Aoyama, K., Hidaka, S., Tanaka, T., and Ishikawa, K. 1982. The nucleotide sequence of 5S RNA from rat liver ribosomes.J. Biochem. 91: 363–367.

    PubMed  CAS  Google Scholar 

  • Balmain, A., Krumlauf, R., Vass, J. K., and Birnie, G. D. 1982. Cloning and characterisation of the abundant cytoplasmic 7S RNA from mouse cells.Nucleic Acids Res.10: 4259–4277.

    Article  PubMed  CAS  Google Scholar 

  • Baralle, F. E., Shoulders, C. C., Goodbourn, S., Jeffreys, A., and Proudfoot, N. J. 1980. The 5’ flanking region of human e-globin gene.Nucleic Acids Res.8: 4393–4404.

    Article  PubMed  CAS  Google Scholar 

  • Benhamou, J., Jourdan, R., and Jordan, B. R. 1977. Sequence ofDrosophila 55 RNA synthesized by cultured cells and by the insect at different developmental stages.J. Mol. Evol. 9: 279–298.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, R. A., Metz, B., and Thimmappaya, B. 1983. Organization of the noncontiguous promoter components of adenovirus VAI RNA gene is strikingly similar to that of eukaryotic transfer RNA genes.Mol. Cell. Biol. 3: 1996–2005.

    PubMed  CAS  Google Scholar 

  • Bogenhagen, D. F. 1985. The intragenic control region of theXenopus 5 S RNA gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation.J. Biol. Chem. 260: 6466–6471.

    PubMed  CAS  Google Scholar 

  • Brennicke, A., Möller, S., and Blanz, P. A. 1985. The 18S and 5S ribosomal RNA genes inOenothera mitochondria: Sequence rearrangements in the 18S and 5S rRNA genes of higher plants.Mol. Gen. Genet. 198: 404–410.

    Article  CAS  Google Scholar 

  • Brosius, J., Dull, T. J., Sleeter, D. D., and Noller, H. F. 1981. Gene organization and primary structure of a ribosomal RNA operon ofEscherichia coli. J. Mol. Biol.148: 107–127.

    Article  CAS  Google Scholar 

  • Brown, D. D., Wensink, P. C., and Jordan, E. 1971. Purification and some characteristics of 5S DNA fromXenopus laevis. Proc. Natl. Acad. Sci. USA 68: 3175–3179.

    Article  CAS  Google Scholar 

  • Brown, D. D., Carroll, D., and Brown, R. D. 1977. The isolation and characterization of a second oocyte 5S DNA fromXenopus laevis. Cell 12: 1045–1056.

    Article  CAS  Google Scholar 

  • Brownlee, G. G., Sanger, F., and Bartell, B. C. 1968. The sequence of 5S ribosomal ribonucleic acid.J. Mol. Biol. 34: 379–412.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee, G. G., Cartwright, E. M., and Brown, D. D. 1974. Sequence studies of the 5S DNA ofXenopus laevis. J. Mol. Biol.89: 703–718.

    Article  CAS  Google Scholar 

  • Burke, D. J., Schaack, J., Sharp, S., and Söll, D. 1983. Partial purification ofDrosophila Kc cell RNA polymerase III transcription components. Evidence for shared 5S RNA and tRNA gene factors.J. Biol. Chem. 258: 15224–15231.

    PubMed  CAS  Google Scholar 

  • Butler, M. H., Wall, S. M., Luehrsen, K. R., Fox, G. E., and Hecht, R. M. 1981. Molecular relationships between closely related strains and species of nematodes.J. Mol. Evol. 18: 18–23.

    Article  PubMed  CAS  Google Scholar 

  • Calabretta, B., Robberson, D. L., Maizel, A. L., and Saunders, G. F. 1981. mRNA in human cells contains sequences complementary to theAlu family of repeated DNA.Proc. Natl. Acad. Sci. USA 78: 6003–6007.

    Google Scholar 

  • Carrara, G., Di Segni, G., Otsuka, A., and Tocchini-Valentini, G. P. 1981. Deletion of the 3’ half of the yeast tRNAli`° gene does not abolish promoter functionin vitro. Cell 27: 371–379.

    CAS  Google Scholar 

  • Chao, S., Sederoff, R. R., and Levings, C. S. 1983. Partial sequence analysis of the 5S to 18S rRNA gene region of the maize mitochondrial genome.Plant Physiol.71: 190–193.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J. F., Printz, R., Callaghan, T., Shuey, D., and Hardison, R. C. 1984. The rabbit C family of short, interspersed repeats. Nucleotide sequence determination and transcriptional analysis.J. Mol. Biol. 176: 120.

    Article  Google Scholar 

  • Childs, G., Maxson, R., Cohn, R. H., and Kedes, L. 1981. Orphons: Dispersed genetic elements derived from tandemly repetitive genes of eucaryotes.Cell 23: 651–663.

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto, G., Castagnoli, L., Melton, D. A., and Cortese, R. 1982a. Promoter of a eukaryotic tRNA Pro gene is composed of three noncontiguous regions.Proc. Natl. Acad. Sci. USA 79: 1195–1199.

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto, G., Traboni, G., and Cortese, R. 1982b. Relationship between the two components of the split promoter of eukaryotic tRNA genes.Proc. Natl. Acad. Sci. USA 79: 1921–1925.

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto, G., Raugei, G., Constanzo, F., Dente, L., and Cortese, R. 1983. Common and interchangeable elements in the promoters of genes transcribed by RNA polymerase III.Cell 32: 725–733.

    Article  PubMed  CAS  Google Scholar 

  • Coggins, L. W., Grindlay, G. J., Vass, J. K., Slater, A. A., Montague, P., Stinson, M. A., and Paul, J. 1980. Repetitive DNA sequences near three human (3-type globin genes.Nucleic Acids Res.8: 3319–3334.

    Article  PubMed  CAS  Google Scholar 

  • Corry, M. J., Payne, P. I., and Dyer, T. A. 1974. The nucleotide sequence of 5S rRNA from the blue-green algaAnacystis nidulans. FEBS Lett.46: 63–66.

    Article  CAS  Google Scholar 

  • Daniels, C. J., Hofman, J. D., MacWilliam, J. G., Doolittle, W. F., Woese, C. R., Luehrsen, K. R., and Fox, G. E. 1985. Sequence of 5S ribosomal RNA gene regions and their products in the archaebacteriumHalobacterium volcanii. Mol. Gen. Genet.198: 270–274.

    Article  CAS  Google Scholar 

  • Darlix, J. L., and Rochaix, J. D. 1981. Nucleotide sequence and structure of cytoplasmic 5S RNA and 5.8S RNA ofChlamydomonas reinhardii. Nucleic Acids Res.9: 1291–1299.

    Article  CAS  Google Scholar 

  • DeFranco, D., Schmidt, O., and Söll, D. 1980. Two control regions for eukaryotic tRNA gene transcription.Proc. Natl. Acad. Sci. USA 77: 3365–3368.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, P. L., Jolly, D. J., Rubin, C. M., Friedmann, T., and Schmid, C. W. 1981. Base sequence studies of 300 nucleotide renatured repeated DNA clones.J. Mol. Biol. 151: 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Delihas, N., and Andersen, J. 1982. Generalized structures of the 5S ribosomal RNAs.Nucleic Acids Res. 10: 7323–7344.

    Article  PubMed  CAS  Google Scholar 

  • Delihas, N., Andersen, J., Sprouse, H. M., Kashdan, M., and Dudock, B. 1981a. The nucleotide sequence of spinach cytoplasmic 5S ribosomal RNA.J. Biol. Chem. 256: 7515–7517.

    PubMed  CAS  Google Scholar 

  • Delihas, N., Andersen, J., Sprouse, H. M., and Dudock, B. 1981b. The nucleotide sequence of the chloroplast 5S ribosomal RNA from spinach.Nucleic Acids Res.9: 2801–2805.

    Article  PubMed  CAS  Google Scholar 

  • Delihas, N., Andersen, J., Andresini, W., Kaufman, S., and Lyman, H. 1981c. The 5S ribosomal RNA ofEuglena gracilis cytoplasmic ribosomes is closely homologous to the 5S RNA of the trypanosomatid protozoa.Nucleic Acids Res.9: 6627–6633.

    Article  PubMed  CAS  Google Scholar 

  • Rey, F. J., Donahue, T. F., and Fink, G. R. 1982.Sigma, a repetitive element found adjacent to tRNA genes of yeast.Proc. Natl. Acad. Sci. USA 79: 4138–4142.

    Article  Google Scholar 

  • Denis, H., and Mairy, M. 1972. Recherches biochimiques sur l’oogenèse. II. Distribution intracellulaire du RNA dans les petits oocytes duXenpus laevis. Eur. J. Biochem.25: 524–534.

    Article  CAS  Google Scholar 

  • Denis, H., and Wegnez, M. 1973. Recherches biochemiques sur l’oogenèse. 7. Synthèse et maturation du RNA 5S dans les petits oocytes deXenopus laevis. Biochimie 55: 437–1151.

    Google Scholar 

  • Deno, H., and Sugiura, M. 1984. Chloroplast tRNAGrr gene contains a long intron in the D stem: Nucleotide sequences of tobacco chloroplast genes for tRNAGIY (UCC) and tRNAArg (UCU).Proc. Natl. Acad. Sci. USA 81: 405–408.

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni, L., Haynes, S. R., Misra, R., and Jelinek, W. R. 1983.Kpn I family of long-dispersed repeated DNA sequences of man: Evidence for entry into genomic DNA of DNA copies of poly A-terminatedKpn I RNAs.Proc. Natl. Acad. Sci. USA 80: 6533–6537.

    Google Scholar 

  • Dillon, L. S. 1962. Comparative cytology and the evolution of life.Evolution 16: 102–117.

    Article  Google Scholar 

  • Dillon, L. S. 1963. A reclassification of the major groups of organisms based upon comparative cytology.Syst. Zool. 12: 71–82.

    Article  Google Scholar 

  • Dillon, L. S. 1981.Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press. Dillon, L. S. 1983.The Inconstant Gene, New York, Plenum Press.

    Google Scholar 

  • Dingermann, T., Burke, D. J., Sharp, S., Schaack, J., and Söll, D. 1982. The 5’ flanking sequences ofDrosophila tRNAArg genes control theirin vitro transcription in aDrosophila cell extract.J. Biol. Chem. 257: 14738–14744.

    PubMed  CAS  Google Scholar 

  • Douglas, S. E., and Doolittle, W. R. 1984. Nucleotide sequence of the 5S rRNA gene and flanking regions in the cyano-bacterium,Anacystis nidulans. FEBS Lett. 166: 307–310.

    Article  CAS  Google Scholar 

  • Duester, G. L., and Holmes, W. M. 1980. The distal end of the ribosomal RNA operonrrnD ofEscherichia coli contains a tRNA i hr gene, two 5S rRNA genes and a transcription terminator.Nucleic Acids Res.8: 3793–3807.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, C. H., Biro, P. A., Choudary, P. V., Elder, J. T., Wang, R. R. C., Forget, B. G., deRiel, J. K., and Weissman, S. M. 1979. RNA polymerase III transcriptional units are interspersed among human non-aglobin genes.Proc. Natl. Acad. Sci. USA 76: 5095–5099.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, C. H., Jagadeesevaran, P., Wang, R. R. C., and Weissman, S. M. 1981. Structural analysis of templates and polymerase III transcripts ofAlu family sequences interspersed among the human ß-like globin genes.Gene 13: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, T. A., and Bowman, C. M. 1979. Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants.Biochem. J. 183: 595–604.

    PubMed  CAS  Google Scholar 

  • Elder, J. T., Pan, J., Duncan, C. H., and Weissman, S. M. 1981. Transcriptional analysis of interspersed repetitive polymerase III transcription units in human DNA.Nucleic Acids Res.9: 1171–1189.

    Article  PubMed  CAS  Google Scholar 

  • Engelke, D. R., Ng, S. Y., Shastry, B. S., and Roeder, R. G. 1980. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes.Cell 19: 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Erdmann, V. A., Huysmans, E., Vandenberghe, A., and De Wachter, R. 1983. Collection of published 5S and 5.8S ribosomal RNA sequences.Nuclei Acids Res.11: r107-r133.

    Article  Google Scholar 

  • Erdmann, V. A., Wolters, J., Huysmans, E., Vandenberghe, A., and Wachter, R. 1984. Collection of published 5S and 5.8S ribosomal RNA sequences.Nucleic Acids Res.12 (suppl.): r133-r166.

    Article  PubMed  Google Scholar 

  • Fedoroff, N. V., and Brown, D. D. 1977. The nucleotide sequence of the repeating unit in the oocyte 5S ribosomal DNA ofXenopus laevis. Cold Spring Harbor Symp. Quant. Biol.42: 1195–1200.

    Article  Google Scholar 

  • Fedoroff, N. V., and Brown, D. D. 1978. The nucleotide sequence of oocyte 5S DNA inXenopus laevis. I. The AT-rich spaces.Cell 13: 701–716.

    Article  PubMed  CAS  Google Scholar 

  • Fischel, J. L., and Ebel, J. P. 1975. Sequence studies on the 5S RNA ofProteus vulgaris: Comparison with the 5S RNA ofEscherichia coli. Biochimie 57: 899–904.

    CAS  Google Scholar 

  • Folk, W. R., Hofstetter, H., and Birnstiel, M. L. 1982. Some bacterial tRNA genes are transcribed by eukaryotic RNA polymerase III.Nucleic Acids Res.10: 7153–7163.

    Article  PubMed  CAS  Google Scholar 

  • Ford, P. J. 1971. Non-coordinated accumulation and synthesis of 55 ribonucleic acid by ovaries ofXenopus laevis. Nature (London) 233: 561–564.

    Article  CAS  Google Scholar 

  • Ford, P. J., and Brown, R. D. 1976. Sequences of 55 ribosomal RNA fromXenopus mülleri and the evolution of 55 gene-coding sequences.Cell 8: 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Forget, B. G., and Weissman, S. M. 1969. Nucleotide sequence of KB cell 5S RNA.Science 158:1695–1700. Fournier, A., Guérin, M. A., Coriet, J., and Clarkson, S. G. 1984. Structure andin vitro transcription of a glycine tRNA gene fromBombyx mori. EMBO J. 3: 1547–1552.

    Google Scholar 

  • Fowlkes, D. M., and Shenk, T. 1980. Transcriptional control regions of the adenovirus VAI RNA gene.Cell 22: 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Fox, G. E., and Woese, C. R. 1975. 5S RNA secondary structure.Nature (London) 256: 505–507.

    Google Scholar 

  • Fox, G. E., Luehrsen, K. R., and Woese, C. R. 1982. Archaebacterial 5S ribosomal RNA.Zentrbl. Bakteriol. Hyg. I Abt. Orig. C3: 330–345.

    Google Scholar 

  • Fritsch, E. F., Lawn, R. M., and Maniatis, T., 1980. Molecular cloning and characterization of the 3-like globin gene cluster. Cell19: 959–972.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, S. A., Deininger, P. L., LaPorte, P., Friedmann, T., and Geiduschek, E. P. 1981. Analysis of transcription of the humanAlu family ubiquitous repeating element by eukaryotic polymerase III.Nucleic Acids Res.9: 6439–6456.

    Article  PubMed  CAS  Google Scholar 

  • Galli, G., Hofstetter, H., and Bimstiel, M. L. 1981. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements.Nature (London) 294: 626–631.

    Article  CAS  Google Scholar 

  • Gamulin, V., Mao, J. I., Appel, B., Sumner-Smith, M., Yamao, F., and Söll, D. 1983. SixSchizosaccharomyces pombe tRNA genes including a gene for a tRNALYs with an intervening sequence which cannot base-pair with the anticodon.Nucleic Acids Res.11: 8537–8546.

    Article  PubMed  CAS  Google Scholar 

  • Garber, R. L., and Gage, L. P. 1979. Transcription of a clonedBombyx mori tRNATa gene: Nucleotide sequence of the tRNA precursor and its processingin vitro. Cell 18: 817–828.

    CAS  Google Scholar 

  • Goldsbrough, P. B., Ellis, T. H. N., and Lomonossoff, G. P. 1982. Sequence variation and methylation of the flax 5S RNA genes.Nucleic Acids Res.10: 4501–4514.

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld, J. M., Andrews, D. L., and Hoch, S. O. 1984. Association of an RNA polymerase III transcription factor with a ribonucleoprotein complex recognized by autoimmune sera.Nucleic Acids Res.12: 3185–3200.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M. W., and Spencer, D. F. 1981. Is wheat mitochondrial 5S ribosomal RNA prokaryotic in nature?Nucleic Acids Res.9: 3523–3529.

    Article  PubMed  CAS  Google Scholar 

  • Gruissem, W., Kotzerke, M., and Seifart, H. K. 1981. Transcription of the cloned genes for ribosomal 5-S RNA in a system reconstitutedin vitro from HeLa cells.Eur. J. Biochem. 117: 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Gruissem, W., Greenberg, B. M., Zurawski, G., Prescott, D. M., and Hallick, R. B. 1983. Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system.Cell 35: 815–828.

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle, R., and Weinmann, R. 1981. Control region for adenovirus VA RNA transcription.Proc. Natl. Acad. Sci. USA 78: 3378–3382.

    Article  PubMed  CAS  Google Scholar 

  • Hanas, J. S., Bogenhagen, D. F., and Wu, C. W. 1983. Cooperative model for the binding ofXenopus transcription factor A to the 5S RNA gene.Proc. Natl. Acad. Sci. USA 80: 2142–2145.

    Article  PubMed  CAS  Google Scholar 

  • Hanas, J. S., Bogenhagen, D. F., and Wu, C. W. 1984a. DNA unwinding ability ofXenopus transcription factor A.Nucleic Acids Res.12: 1265–1276.

    Article  PubMed  CAS  Google Scholar 

  • Hanas, J. S., Bogenhagen, D. F., and Wu, C. W. 19846. Binding ofXenopus transcription factor A to 5S RNA and to single-stranded DNA.Nucleic Acids Res.12: 2745–2758.

    Google Scholar 

  • Haynes, S. R., and Jelinek, W. R. 1981. Low molecular weight RNAs transcribedin vitro by RNA polymerase III from Alu-type dispersed repeats in Chinese hamster DNA are also foundin vivo. Proc. Natl. Acad. Sci. USA 78: 6130–6134.

    Article  CAS  Google Scholar 

  • Haynes, S. R., Toomey, T. P., Leinwand, L., and Jelinek, W. R. 1981. The Chinese hamster A/u-equivalent sequence: A conserved, highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggesting a transposable element.Mol. Cell. Biol. 1: 573–583.

    PubMed  CAS  Google Scholar 

  • Hellung-Larsen, P., Kulamowica, I., and Frederiksen, S. 1980. Synthesis of low molecular weight RNA components in cells with a temperature-sensitive polymerase II.Biochim. Biophys. Acta 609: 201–204.

    Article  PubMed  CAS  Google Scholar 

  • Henrick, J. P., Wolin, S. L., Rinke, J., Lerner, M. R., and Steitz, J. A. 1981. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: Further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells.Mol. Cell. Biol. 1: 1138–1149.

    Google Scholar 

  • Hinnebusch, A. G., Klotz, L. C., Blanken, R. L., and Loeblish, A. R. 1981. An evaluation of the phylogenetic position of the dinoflagellateCrypthecondinium cohnii based on 5S rRNA characterization.J. Mol. Evol. 17: 334–347.

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter, H., Kressmann, A., and Birnstiel, M. L. 1981. A split promoter for a eukaryotic tRNA gene.Cell 24: 573–585.

    Article  PubMed  CAS  Google Scholar 

  • Hori, H., and Osawa, S. 1979. Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species.Proc. Natl. Acad. Sci. USA 76: 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Hori, H., Osawa, S., Murao, K., and Ishikura, H. 1980. The nucleotide sequence of 5S ribosomal RNA from Micrococcus lysodeikticus.Nucleic Acids Res.8: 5423–5426.

    Article  PubMed  CAS  Google Scholar 

  • Hori, H., Lim, B. L., and Osawa, S. 1985. Evolution of green plants as deduced from 5S rRNA sequences.Proc. Natl. Acad. Sci. USA 82: 820–823.

    Article  PubMed  CAS  Google Scholar 

  • Jacq, B., Jourdan, R., and Jordan, B. R. 1977. Structure and processing of precursor 5S RNA in Drosophila melanogaster.J. Mol. Biol. 117: 785–795.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek, W. R., and Schmid, C. W. 1982. Repetitive sequences in eukaryotic DNA and their expression.Annu. Rev. Biochem. 51: 813–844.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek, W. R., Toomey, T. P., Leinwand, L., et al. 1980. Ubiquitous, interspersed repeated sequences in mammalian genomes.Proc. Natl. Acad. Sci. USA 77: 1398–1402.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. D., and Raymond, G. J. 1984. Three regions of a yeast tRNA!“ gene promote RNA polymerase III transcription.J. Biol. Chem. 259: 5090–5094.

    Google Scholar 

  • Jordan, B. R., Galling, G., and Jourdan, R. 1974. Sequence and conformation of 5S RNA fromChlorella cytoplasmic ribosomes: Comparison with other 5S RNA molecules. J. Mol. Biol.87: 205–225.

    Article  PubMed  CAS  Google Scholar 

  • Kato, N., Hoshino, H., and Harada, F. 1982. Nucleotide sequence of 4.5S RNA (C8 or hY5) from the HeLacells. Biochem. Biophys. Res. Commun.108: 363–370.

    Article  PubMed  CAS  Google Scholar 

  • Katze, M. G., Chen, Y. T., and Krug, R. M. 1984. Nuclear-cytoplasmic transport and VAI RNA-independent translation of influenza viral messenger RNAs in late adenovirus-infected cells.Cell 37: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Keus, R. J. A., Roovers, D. J., Dekker, A. F., and Groot, G. S. P. 1983. The nucleotide sequence of the 4.5S and 5S rRNA genes and flanking regions fromSpirodela oligorhiza chloroplasts.Nucleic Acids Res.11: 3405–3410.

    Article  PubMed  CAS  Google Scholar 

  • Kingston, R. E., and Chamberlin, M. J. 1981. Pausing and attenuation of in vitro transcription in the rrnB operon of E. coli.Cell 27: 523–531.

    CAS  Google Scholar 

  • Kjems, J., Olesen, S. O., and Garrett, R. A. 1985. Comparison of eubacterial and eukaryotic 5S RNA structures: A chemical modification study.Biochemistry 24: 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Kmiya, H., and Takemura, S. 1981. The nucleotide sequence of 5S ribosomal RNA from slime mold Physarum polycephalum.J. Biochem. 90: 1577–1581.

    Google Scholar 

  • Korn, L. J., and Brown, D. D. 1978. Nucleotide sequences of Xenopus borealis oocyte 5S DNA: Comparison of sequences that flank several related eucaryotic genes. Cell15: 1145–1156.

    Article  PubMed  CAS  Google Scholar 

  • Koski, R. A., Allison, D. S., Worthington, M., and Hall, B. D. 1982. Anin vitro RNA polymerase III system fromS. cerevisiae: Effects of deletions and point mutations uponSUP4 gene transcription.Nucleic Acids Res.10: 8127–8143.

    Article  PubMed  CAS  Google Scholar 

  • Krayev, A. S., Kramerov, D. A., Skryabin, K. G., Ryskov, A. P., Bayev, A. A., and Georgiev, G. P. 1980. The nucleotide sequence of the ubiquitous repetitive DNA sequence B 1 complementary to the most abundant class of mouse fold-back RNA.Nucleic Acids Res.8: 1201–1215.

    Article  PubMed  CAS  Google Scholar 

  • Krayev, A. S., Markusheva, T. V., Kramerov, D. A., Ryskov, A. P., Skryabin, K. G., Bayev, A. A., and Georgiev, G. P. 1982. Ubiquitous transposon-like repeats B 1 and B2 of the mouse genome: B2 sequencing.Nucleic Acids Res.10: 7461–7475.

    Article  PubMed  CAS  Google Scholar 

  • Kressmann, A., Hofstetter, H., Di Capua, E., Grosschedl, R., and Birnstiel, M. L. 1979. A tRNA gene ofXenopus laevis contains at least two sites promoting transcription.Nucleic Acids Res.7: 1749–1763.

    Article  PubMed  CAS  Google Scholar 

  • Krolewski, J. J., Schindler, C. W., and Rush, M. G. 1984. Structure of extrachromosomal circular DNAs containing both theAlu family of dispersed repetitive sequences and other regions of chromosomal DNA.J. Mol. Biol. 174: 41–54.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai, I., Digweed, M., Erdmann, V. A., Watanabe, K., and Oshima, T. 1981. The nucleotide sequence of 5S rRNA from an extreme thermophile,Thermus thermophilus HB8.Nucleic Acids Res.9: 5159–5162.

    Article  PubMed  CAS  Google Scholar 

  • Kumazaki, T., Hori, H., Osawa, S., Mita, T., and Higashinakagawa, T. 1982. The nucleotide sequences of 5SrRNAs from three ciliated protozoa. Nucleic Acids Res.10: 4409–4412.

    Article  PubMed  CAS  Google Scholar 

  • Lamond, A. I., and Travers, A. A. 1983. Requirement for an upstream element for optimal transcription of a bacterial tRNA gene. Nature (London)305: 248–250.

    Article  CAS  Google Scholar 

  • Laski, F. A., Belagaje, R., RajBhandary, U. L., and Sharp, P. A. 1982. An amber suppressor tRNA gene derived by site-specific mutagenesis: Cloning and function in mammalian cells.Proc. Natl. Acad. Sci. USA 79: 5813–5817.

    Article  PubMed  CAS  Google Scholar 

  • Lassar, A. B., Martin, P. L., and Roeder, R. G. 1983. Transcription of class III genes: Formation of preinitiation complexes.Science 222: 740–748.

    Article  PubMed  CAS  Google Scholar 

  • Lenardo, M. J., Dorfman, D. M., Reddy, L. V., and Donelson, J. E. 1985. Characterization of theTrypanosoma brucei 5S RNA gene and transcript: The 5S rRNA is a spliced-leader-independent species.Gene 35: 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Lerner, M. R., and Steitz, J. A. 1981. Snurps and Scyrps.Cell 25: 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Lerner, M. R., Andrews, N. C., Miller, G., and Steitz, J. A. 1981. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus.Proc. Natl. Acad. Sci. USA 78: 805–809.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Reddy, R., Henning, D., Epstein, P., and Busch, H. 1982. Nucleotide sequence of 7S RNA: Homology toAlu DNA and 4.5S DNA.J. Biol. Chem. 257: 5136–5142.

    PubMed  CAS  Google Scholar 

  • Lu, A. L., Steege, D. A., and Stafford, D. W. 1980. Nucleotide sequence of a 5S ribosomal RNA gene in the sea urchinLytechinus variegatus. Nucleic Acids Res.8: 1839–1853.

    Article  CAS  Google Scholar 

  • Luehrsen, K. R., and Fox, G. E. 1981. Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA.Proc. Natl. Acad. Sci. USA 78: 2150–2154.

    Article  PubMed  CAS  Google Scholar 

  • Luehrsen, K. R., Fox, G. E., and Woese, C. R. 1980. The sequence ofTetrahymena thermophila 5S ribosomal ribonucleic acid.Curr. Microbiol. 4: 123–126.

    Article  CAS  Google Scholar 

  • Luehrsen, K. R., Fox, G. E., Kilpatrick, M. W., Walker, R. T., Domdey, H., Krupp, G., and Gross, H. J. 1981. The nucleotide sequence of the 5S rRNA from the archaebacteriumThermoplasma acidophilum. Nucleic Acids Res.9: 965–970.

    Article  CAS  Google Scholar 

  • Luoma, G. A., and Marshall, A. G. 1978a. Laser Raman evidence for a new cloverleaf secondary structure for eucaryotic 5S RNA.J. Mol. Biol. 125: 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Luoma, G. A., and Marshall, A. G. 1978b. Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA.Proc. Natl. Acad. Sci. USA 75: 4901–4905.

    Article  PubMed  CAS  Google Scholar 

  • MacKay, R. M., and Doolittle, W. F. 1981. Nucleotide sequence ofAcanthamoeba castellani 5S and 5.8S ribosomal ribonucleic acids: phylogenetic and comparative structural analysis.Nucleic Acids Res.9: 3321–3334.

    Article  PubMed  CAS  Google Scholar 

  • MacKay, R. M., Spencer, D. F., Doolittle, W. F., and Gray, M. W. 1980. Nucleotide sequences of wheatembryo cytosol 5-S and 5.8-S ribosomal ribonucleic acids.Eur. J. Biochem. 112: 561–576.

    Article  PubMed  CAS  Google Scholar 

  • MacKay, R. M., Salgado, D., Bonen, L., Stackebrandt, E., and Doolittle, W. F. 1982. The 5S ribosomal RNAs ofParacoccus denitrificans andProchloron. Nucleic Acids Res.10: 2963–2970.

    Article  CAS  Google Scholar 

  • Maeda, N., Bliska, J. B., and Smithies, O. 1983. Recombination and balanced chromosome polymorphism suggested by DNA sequences 5’ to the human S-globin gene.Proc. Natl. Acad. Sci. USA 80: 5012–5016.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. 1970.Origin of Eukaryotic Cells, New Haven, Yale University Press.

    Google Scholar 

  • Marotta, C. A., Varricchio. F., Smith, I., Weissman, S. M., Sogin, M. L., and Pace, N. R. 1976. The primary structure ofBacillus subtilis andBacillus stearothermophilus 5S ribonucleic acids.J. Biol. Chem. 251: 3122–3127.

    CAS  Google Scholar 

  • Mattaj, I. W., Lienhard, S., Zeller, R., and DeRobertis, E. M. 1983. Nuclear exclusion of transcription factor IIIA and the 42S particle transfer-RNA-binding protein inXenopus oocytes: A possible mechanism for gene control?J. Cell Biol. 97: 1261–1265.

    Article  PubMed  CAS  Google Scholar 

  • Maxam, A. M., Tizard, R., Skryabin, K. G., and Gilbert, W. 1977. Promoter region for yeast 5S ribosomal RNA.Nature (London) 267: 643–645.

    Article  CAS  Google Scholar 

  • Miller, J. R. 1983. 5S ribosomal RNA genes. In: Maclean, N., Gregory, S. P., and Flavell, R. A., eds.,Eukaryotic Genes: Their Structure, Activity and Regulation, London, Butterworths, pp. 225–237.

    Google Scholar 

  • Miller, J. R., Cartwright, E. M., Brownlee, G. G., Fedoroff, N. V., and Brown, D. D. 1978. The nucleotide sequence of.00cyte 5S DNA inXenopus laevis. II. The GC-rich region.Cell 13: 717–725.

    Article  PubMed  CAS  Google Scholar 

  • Morgens, P. H., Grabau, E. A., and Gesteland, R. F. 1984. A novel soybean mitochondrial transcript resulting from a DNA rearrangement involving the 5S rRNA gene.Nucleic Acids Res.12: 5665–5684.

    Article  PubMed  CAS  Google Scholar 

  • Morris, G. F., and Marzluff, W. F. 1983. A factor in sea urchin eggs inhibits transcription in isolated nuclei by sea urchin RNA polymerase III.Biochemistry 22: 645–653.

    Article  PubMed  CAS  Google Scholar 

  • Morton, D. G., and Sprague, K. U. 1984.In vitro transcription of a silkworm 5S RNA gene requires an upstream signal.Proc. Natl. Acad. Sci. USA 81: 5519–5522.

    Article  CAS  Google Scholar 

  • Murphy, M. H., and Baralle, F. E. 1983. Directed semisynthetic point mutational analysis of an RNA polymerase III promoter.Nucleic Acids Res.11: 7695–7716.

    Article  PubMed  CAS  Google Scholar 

  • Newhouse, N., Nicoghosian, K., and Cedergren, R. J. 1982. The nucleotide sequence of phenylalanine tRNA and 5S RNA fromRhodospirillum rubrum. Can. J. Biochem.59: 921–932.

    Article  Google Scholar 

  • Nishikawa, K., and Takemura, S. 1974. Structure and function of 5S ribosomal ribonucleic acid fromTorulopsis utilis. II. Partial digestion from ribonucleases and derivation of the complete sequence.J. Biochem. 76: 935–947.

    PubMed  CAS  Google Scholar 

  • Page, G. S., Smith, S., and Goodman, H. M. 1981. DNA sequence of the rat growth hormone gene; Location of the 5’ terminus of the growth hormone mRNA and identification of an internal transposon-like element.Nucleic Acids Res.9: 2087–2103.

    Article  PubMed  CAS  Google Scholar 

  • Pan, J., Elder, J. T., Duncan, C. H., and Weissman, S. M. 1981. Structural analysis of interspersed repetitive polymerase III transcription units in human DNA.Nucleic Acids Res.9: 1151–1169.

    PubMed  CAS  Google Scholar 

  • Parker, C. S., and Topol, J. 1984. ADrosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene.Cell 37: 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Pederson, D. S., Yao, M. C., Kimmel, A. R., and Gorovsky, M. A. 1984. Sequence organization and flanking clusters of 5S ribosomal RNA genes inTetrahymena. Nucleic Acids Res.12: 3003–3021.

    Article  CAS  Google Scholar 

  • Peffley, D. M., and Sogin, M. L. 1981. A putative tRNATm gene cloned fromDictyostelium discoideum: Its nucleotide sequence and association with repetitive deoxyribonucleic acid.Biochemistry 20: 4015–4021.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., Wormington, W. M., and Brown, D. D. 1981. Related 5S RNA transcription factors inXenopus oocytes and somatic cells.Proc. Natl. Acad. Sci. USA 78: 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Stable, C., Ayres, T. M., and Shen, C. K. J. 1984. Distinctive sequence organization and functional programming of anAlu repeat promoter.Proc. Natl. Acad. Sci. USA 81: 5291–5295.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R. C., Doering, J. L., and Brown, D. D. 1980. Characterization of twoXenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA.Cell 20: 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Picard, B. M., and Wegnez, M. 1979. Isolation of a 7S particle fromXenopus laevis oocytes: A 5S RNA-protein complex.Proc. Natl. Acad. Sci. USA 76: 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Picard, B. M., Maire, M., Wegnez, M., and Denis, H. 1980. Biochemical research on oogenesis. Composition of the 42S storage particles ofXenopus laevis oocytes.Eur. J. Biochem. 109: 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Piper, P. W., Lockheart, A., and Patel, N. 1984. A minor class of 5S rRNA genes inSaccharomyces cerevisiae X2180-IB, one member of which lies adjacent to a Ty transposable element.Nucleic Acids Res.12: 4083–4096.

    Article  PubMed  CAS  Google Scholar 

  • Poncz, M., Schwartz, E., Ballantine, M., and Surrey, S. 1983. Nucleotide sequence analysis of the 83-globin gene region in humans.J. Biol. Chem. 258: 11599–11609.

    PubMed  CAS  Google Scholar 

  • Potter, S. S. 1982. DNA sequence of a foldback transposable element inDrosophila. Nature (London) 297: 201–204.

    Article  CAS  Google Scholar 

  • Pribula, C. D., Fox, G. E., and Woese, C. R. 1976. Nucleotide sequence ofClostridium pasteurianum 5S rRNA.FEBS Lett.64: 350–352.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, W. F., and Gottesfeld, J. M. 1983. 5S rRNA gene transcription factor IIIA alters the helical configuration of DNA.Proc. Natl. Acad. Sci. USA 80: 1862–1866.

    Google Scholar 

  • Reynolds. W. F., Bloomer, L. S., and Gottesfeld, J. M. 1983. Control of 5S RNA transcription inXenopus somatic cell chromatin: Activation with an oocyte extract.Nucleic Acids Res.11: 57–75.

    Article  Google Scholar 

  • Robertson, H. D., and Dickson, E. 1984. Structure and distribution ofAlu family sequences or their analogs within heterogeneous nuclear RNA of HeLa, KB, and L cells.Mol. Cell. Biol. 4: 310–316.

    PubMed  CAS  Google Scholar 

  • Rosa, M. D., Gottlieb, E., Lerner, M. R., and Steitz, J. A. 1981. Striking similarities are exhibited by 2 small Epstein-Barr virus-encoded RNA species and the adenovirus-associated species VAI and VAII.Mol. Cell. Biol. 1: 785–796.

    PubMed  CAS  Google Scholar 

  • Rosenthal, D., and Doering, J. L. 1983. The genomic organization of dispersed tRNA and 5S RNA genes inXenopus laevis. J. Biol. Chem.258: 7402–7410.

    CAS  Google Scholar 

  • Roy, M. K., Singh, B., Ray, B. K., and Apirion, D. 1983. Maturation of 5-S rRNA: Ribonuclease E cleavages and their dependence on precursor sequences.Eur. J. Biochem. 131: 119–127.

    CAS  Google Scholar 

  • Rubin, C. M., Houck, C. M., Deininger, P. L., Friedmann, T., and Schmid, C. W. 1980. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences.Nature (London) 284: 372–374.

    Article  CAS  Google Scholar 

  • Ruet, A., Carnier, S., Smagowicz, W., Sentenac, A., and Fromageot, P. 1984. Isolation of a class C transcription factor which forms a stable complex with tRNA genes.EMBO J.3: 343–350.

    PubMed  CAS  Google Scholar 

  • Sagin, L. 1967. On the origin of mitosing cells.J. Theor. Biol. 14: 225–274.

    Article  Google Scholar 

  • Sakamoto, K., Kominami, R., Mishima, Y., and Okada, N. 1984. The 6S RNA transcribed from rodent total DNAin vitro is the transcript of the type 2Alu family.Mol. Gen. Genet. 194: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Sakonju, S. 1981. Identification of a control region that directs the initiation of transcription with a specific transcription factor. Ph.D. dissertation, Johns Hopkins University, Baltimore.

    Google Scholar 

  • Sakonju, S., and Brown, D. D. 1982. Contact points between a positive transcription factor and theXenopus 5S RNA gene.Cell 31: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Sakonju, S., Brown, D. D., Engelke, D. R., Ng, S. Y., Shastry, B. S., and Roeder, R. 1981. The binding of a transcription factor to deletion mutants of a 55 ribosomal RNA gene.Cell 23: 665–669.

    Article  PubMed  CAS  Google Scholar 

  • Schaack, J., Sharp, S., Dingermann, T., Burke, D. J., Cooley, L., and Söll, D. 1984. The extent of a eukaryotic tRNA gene.J. Biol. Chem. 259: 1461–1467.

    PubMed  CAS  Google Scholar 

  • Scherer, G., Tschudi, C., Perera, J., Delius, H., and Pirotta, V. 1982.B104, a new dispersed repeated gene family inDrosophila melanogaster and its analogies with retroviruses.J. Mol. Biol. 157: 435–451.

    CAS  Google Scholar 

  • Schimenti, J. C., and Duncan, C. H. 1984. Ruminant globin gene structures suggest an evolutionary role for Alu-type repeats.Nucleic Acids Res.12: 1641–1655.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, C. W., and Jelinek, W. R. 1982. TheAlu family of dispersed repetitive sequences.Science 218: 1065–1070.

    Article  Google Scholar 

  • Schon, E. A., Cleary, M. L., Haynes, J. R., and Lingrel, J. B. 1981. Structure and evolution of goat y-, and ßA-globin genes: Three developmentally regulated genes contain inserted elements.Cell 27: 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Segall, J., Matsui, T., and Roeder, R. G. 1980. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III.J. Biol. Chem. 255: 11986–11991.

    PubMed  CAS  Google Scholar 

  • Sekiya, T., Mori, M., Takahashi, N., and Nishimura, S. 1980. Sequence of the distal tRNAASP gene and the transcription termination signal in theEscherichia coli ribosomal RNA operonrrnF(or G). Nucleic Acids Res.8: 3809–3827.

    Article  CAS  Google Scholar 

  • Setzer, D. R., and Brown, D. D. 1985. Formation and stability of the 5S RNA transcription complex.J. Biol. Chem. 260: 2483–2492.

    PubMed  CAS  Google Scholar 

  • Sharp, S., Dingermann, T., Schaack, J., Sharp, J. A., Burke, D. J., DeRobertis, E. M., and Söll, D. 1983. Each element of theDrosophila tRNAArg gene split promoter directs transcription inXenopus oocytes.Nucleic Acids Res.11: 8677–8690.

    Article  PubMed  CAS  Google Scholar 

  • Shen, C. K. J., and Maniatis, T. 1982. The organization, structure, andin vitro transcription ofAlu family RNA polymerase III transcription units in the human a-like globin gene cluster: Precipitation ofin vitro transcripts by lupus anti-La antibodies.J. Mol. Appl. Genet. 1: 343–360.

    PubMed  CAS  Google Scholar 

  • Shi, X. P., Wingender, E., Böttrich, J., and Seifart, K. H. 1983. Faithful transcription of ribosomal 5-S RNAin vitro depends on the presence of several factors.Eur. J. Biochem. 131: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Simoncsits, A. 1980. 3’ terminal labelling of RNA with ß-32P-pyrophosphate group and its application to the sequence analysis of 5S RNA fromStreptomyces griseus. Nucleic Acids Res. 8:4111–4124.

    Google Scholar 

  • Singer, M. F. 1982. SINES and LINES: Highly repeated short and long interspersed sequences in mammalian genomes.Cell 28: 433–434.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B., and Apirion, D. 1982. Primary and secondary structure in a precursor of 5S rRNA.Biochim. Biophys. Acta 698: 252–259.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. R., Jackson, J., and Brown, D. D. 1984. Domains of the positive transcription factor specific for theXenopus 5S RNA gene.Cell 37: 645–652.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, D. F., Bonen, L., and Gray, M. W. 1981. Primary sequence of wheat mitochondrial 5S ribosomal ribonucleic acid: Functional and evolutionary implications.Biochemistry 20: 4022–4029.

    Article  PubMed  CAS  Google Scholar 

  • Spradling, A. C., and Rubin, G. M. 1981.Drosophila genome organization: Conserved and dynamic aspects.Annu. Rev. Genet. 15: 219–264.

    CAS  Google Scholar 

  • Sprague, K. U., Larson, D., and Morton, D., 1980. 5’ flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologousin vitro transcription systems.Cell 22: 171–178.

    Google Scholar 

  • Sprinzl, M., and Gauss, D. H. 1984. Compilation of sequences of tRNA genes.Nucleic Acids Res.12 (Suppl.): r59-r131.

    Article  PubMed  Google Scholar 

  • Stahl, D. A., Luehrsen, K. R., Woese, C. R., and Pace, N. R. 1981. An unusual 5S rRNA1 fromSulfolobus acidocaldarius, and its implications for a general 5S rRNA structure.Nucleic Acids Res.9: 6129–6137.

    Article  PubMed  CAS  Google Scholar 

  • Stillman, D. J., and Geiduschek, E. P. 1984. Differential binding ofS. cerevisiae RNA polymerase III transcription factors to two promoter segments of a tRNA gene.EMBO J.3: 847–853.

    PubMed  CAS  Google Scholar 

  • Stillman, D. J., Sivertsen, A. L., Zentner, P. G., and Geiduschek, E. P. 1984. Correlations between transcription of a yeast tRNA gene and transcription factor-DNA interactions.J. Biol. Chem. 259: 7955–7962.

    PubMed  CAS  Google Scholar 

  • Stumph, W. E., Kristo, P., Tsai, M. J., and O’Malley, B. W. O. 1981. A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats.Nucleic Acids Res.9: 5383–5397.

    Article  PubMed  CAS  Google Scholar 

  • Szeberényi, J., and Apirion, D. 1983. Initiation, processing, and termination of ribosomal RNA from a hybrid 5 S ribosomal RNA gene in a plasmid.J. Mol. Biol. 168: 525–561.

    Article  PubMed  Google Scholar 

  • Tabata, S. 1980. Structure of the 5-S ribosomal RNA gene and its adjacent regions inTorulopsis utilis. Eur. J. Biochem.110: 107–114.

    Article  CAS  Google Scholar 

  • Takaiwa, F., and Sugiura, M. 1980. Nucleotide sequences of the 4.5S and 5S ribosomal RNA genes from tobacco chloroplasts.Mol. Gen. Genet. 180: 1–4.

    Article  CAS  Google Scholar 

  • Takaiwa, F., and Sugiura, M. 1982. The nucleotide sequence of chloroplast 5S ribosomal RNA from a fern,Dryopteris acuminata. Nucleic Acids Res. 10: 5369–5373.

    Article  CAS  Google Scholar 

  • Takaiwa, F., Kusuda, M., Saga, N., and Sugiura, M. 1982. The nucleotide sequence of 5S rRNA from a red alga,Prophyra yezoensis. Nucleic Acids Res. 10: 6037–6040.

    Article  CAS  Google Scholar 

  • Thimmappaya, B., Weinberger, C., Schneider, R. J., and Shenk, T. 1982. Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection.Cell 31: 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Traboni, C., Ciliberto, G., and Cortese, R. 1982. A novel method for site-directed mutagenesis: Its application to a eukaryotic tRNAPr0 gene promoter.EMBO J.1: 415–420.

    PubMed  CAS  Google Scholar 

  • Tschudi, C., and Pirrotta, V. 1980. Sequence and heterogeneity in the 5S RNA gene cluster ofDrosophila melanogaster. Nucleic Acids Res.8: 441–451.

    Article  CAS  Google Scholar 

  • Ullu, E., and Tschudi, C. 1984.Alu sequences are processed 7SL RNA genes.Nature (London) 312: 171–172.

    Article  CAS  Google Scholar 

  • Ullu, E., Murphy, S., and Melli, M. 1982. Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in anAlu sequence.Cell 29: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela, P., Bell, G. I., Masiarz, F. R., DeGennaro, L. J., and Rutter, W. J. 1977a. Nucleotide sequence of the yeast 5S ribosomal RNA gene and adjacent putative control regions.Nature (London) 267: 641–643.

    Article  CAS  Google Scholar 

  • Valenzuela, P., Bell, G. I., Venegas, A., Sewell, E. T., Masiarz, F. R., DeGennaro, L. J., Weinberg, F., and Rutter, W. J. 1977b. Ribosomal RNA genes ofSaccharomyces cerevisiae. H. Physical map and nucleotide sequence of the 5S ribosomal RNA gene and adjacent intergenic regions.J. Biol. Chem. 252: 8126–8135.

    PubMed  CAS  Google Scholar 

  • Vandenberghe, A., Wassink, A., Raeymaekers, P., DeBaerre, R., Huysmans, E., and De Wachter, R. 1985. Nucleotide sequence, secondary structure and evolution of the 5S ribosomal RNA from five bacterial species.Eur. J. Biochem. 149: 537–542.

    Article  PubMed  CAS  Google Scholar 

  • Walker, W. F., and Doolittle, W. F. 1982. Nucleotide sequences of 5S ribosomal RNA from four oomycete and chytrid water molds.Nucleic Acids Res.10: 5717–5721.

    Article  PubMed  CAS  Google Scholar 

  • Walker, R. T., Cheton, E. T. J., Kilpatrick, M. W., Rogers, M. J., and Simmons, J. 1982. The nucleotide sequence of the 5S rRNA fromSpiroplasma species BC3 andMycoplasma mycoides sp.capri PG3.Nucleic Acids Res.10: 6363–6367.

    Article  PubMed  CAS  Google Scholar 

  • Walter, P., and Blobel, G. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum.Nature (London) 299: 691–698.

    Article  CAS  Google Scholar 

  • Watanabe, Y., Tsukada, T., Notake, M., Nakanishi, S., and Numa, S. 1982. Structural analysis of repetitive DNA sequences in the bovine corticotropin-ß-lipotropin precursor gene region.Nucleic Acids Res.10: 1459–1469.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, A. M. 1980. An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome.Cell 22: 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R., and Fox, G. E. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms.Proc. Nad. Acad. Sci. USA 74: 5088–5090.

    Article  CAS  Google Scholar 

  • Woese, C. R., Pribula, C. D., Fox, G. E., and Zablen, L. B. 1975. The nucleotide sequence of the 5S ribosomal RNA from a photobacterium.J. Mol. Evol. 5: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R., Luehrsen, K. R., Pribula, C. D., and Fox, G. E. 1976. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes.J. Mol. Evol. 8:143-153.

    Google Scholar 

  • Woese, C. R. Magrum, L. J., and Fox, G. E. 1978. Archaebacteria.J. Mol. Evol. 11: 245–252.

    Article  CAS  Google Scholar 

  • Wolin, S. L., and Steitz, J. A. 1983. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome.Cell 32: 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Wormington, W., Bogenhagen, D. F., Jordan, E., and Brown, D. D. 1982. A quantitative assay forXenopus 5S RNA gene transcriptionin vitro. Cell 24: 809–818.

    Google Scholar 

  • Yamamoto, T., Davis, C. G., Brown, M. S., Schneider, W. J., Casey, M. L., Goldstein, J. L., and Russell, D. W. 1984. The human LDL receptor: A cysteine-rich protein with multipleAlu sequences in its mRNA.Cell 39: 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Zieve, G. W. 1981. Two groups of small stable RNAs.Cell 25: 296–297.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillon, L.S. (1987). The 5 S Ribosomal and Other Small RNAs. In: The Gene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2007-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2007-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2009-6

  • Online ISBN: 978-1-4899-2007-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics