Skip to main content

Processing the Primary Transcripts

  • Chapter
The Gene
  • 543 Accesses

Abstract

Aside from promoters, ancillary sites, terminators, and other features involved in transcription, the mature gene structure includes signals needed for processing of the RNA copy. Indeed, there are many devices encoded into its sequence that act secondarily even after translation is completed. Among these are the clues that afford direction to cleaving enzymes, including the proteases that split transit peptides from diplomorphic gene products or release the ultimate proteins when a cryptomorphic form is to be activated. Although the amino acids involved in such recognition functions are obviously encoded in the mature coding sector and hence are a fundamental part of the gene structure, here attention is restricted to clues that are active directly in the primary transcript. These prove quite adequate to reveal that the problems associated with promoters and their associates in transcriptional functions continue into the present topic, as they doubtlessly also do with regard to the products resulting from translation—a point that becomes particularly clear in a discussion related to intron removal (Section 12.6.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alonso, A., Jorcano, J. L., Beck, E., Hovemann, B., and Schmidt, T. 1984a.Drosophila melanogaster UI snRNA genes.J. Mol. Biol. 180: 825–836.

    CAS  Google Scholar 

  • Alonso, A., Beck, E., Jorcano, J. L., and Hovemann, B. 1984b. Divergence of U2 snRNA sequences in the genome ofD. melanogaster. Nucleic Acids Res.12: 9543–9550.

    Article  CAS  Google Scholar 

  • Anderson, S., Bankier, A. T., Ban-ell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlick, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. 1981. Sequence and organization of the human mitochondrial genome.Nature (London) 290: 457–464.

    Google Scholar 

  • Anderson, S., de Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sange, F., and Young, I. G. 1982. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome.J. Mol. Biol. 156: 683–717.

    Article  PubMed  CAS  Google Scholar 

  • Beacham, I. R., Schweitzer, B. W., Warrick, H. M., and Carbon, J. 1984. The nucleotide sequence of the yeastARG4 gene.Gene 29: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Bechmann, H., Haid, A., Schweyen, R. J., Mathews, S., and Kaudewitz, F. 1981. Expression of the “split gene” COB in yeast mtDNA. Translation of intervening sequences in mutant strains.J. Biol. Chem. 256: 3525–3531.

    PubMed  CAS  Google Scholar 

  • Beck, E., Jorcano, J. L., and Alonso, A. 1984.Drosophila melanogaster Ul and U2 small nuclear RNA genes contain common flanking sequences.J. Mol. Biol. 173: 539–542.

    CAS  Google Scholar 

  • Benne, R., DeVories, B. F., Van den Burg, J., and Klaver, B. 1983. The nucleotide sequence of a segment ofTrypanosoma brucei mitochondria) maxi-circle DNA that contains the gene for apocytochromeb and some unusual unassigned reading frames.Nucleic Acids Res.11: 6925–6941.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J. L., and Hall, B. D. 1982. Codon selection in yeast.J. Biol. Chem. 257: 3026–3031.

    PubMed  CAS  Google Scholar 

  • Berget, S. M. 1984. Are U4 small nuclear ribonucleoproteins involved in polyadenylation?Nature (London) 309: 179–181.

    Article  CAS  Google Scholar 

  • Bernstein, L. B., Mount, S. M., and Weiner, A. M. 1983. Pseudogenes for human small nuclear RNA U3 appear to rise by integration of self-primed reverse transcripts of the RNA into new chromosomal sites.Cell 32: 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. 1981. Sequence and gene organization of mouse mitochondrial DNA.Cell 26: 167–180.

    Article  PubMed  CAS  Google Scholar 

  • Blake, C. C. F. 1978. Do genes-in-pieces imply proteins-in-pieces?Nature (London) 273: 267.

    Article  Google Scholar 

  • Boardman, M., Basi, G. S., and Storti, R. V. 1985. Multiple polyadenylation sites in aDrosophila tropomyosin gene are used to generate functional mRNAs.Nucleic Acids Res.13: 1763–1776.

    Article  Google Scholar 

  • Boel, E., Hansen, M. T., Hjort, I., Hpegh, I., and FĂĽl, N. P. 1984. Two different types of intervening sequences in glucoamylase gene fromAspergillus niger. EMBO J.3: 1581–1585.

    CAS  Google Scholar 

  • Branlant, C., Krol, A., Ebel, J. P., Lazar, E., Gallinaro, H., Jacob, M., Sri-Widada, J., and Jeanteur, P. 1980. Nucleotide sequences of nuclear UlA RNAs from chicken, rat, and man. Nucleic Acids Res. 8: 443–4154.

    Google Scholar 

  • Branlant, C., Krol, A., Lazar, E., Haendler, B., Jacob, M., Galago-Dias, L., and Pousada, C. 1983. High evolutionary conservation of the secondary structure and of certain nucleotide sequences of U5 RNA.Nucleic Acids Res.11: 8359–8368.

    Article  PubMed  CAS  Google Scholar 

  • Bringmann, P., Appel, B., Rinke, J., Reuter, R., Theissen, H., and LĂĽhrmann, R. 1984. Evidence for the existence of snRNAs U4 and U6 in a single ribonucleoprotein complex and for their association by intermolecular base pairing.EMBO J. 3: 1357–1363.

    PubMed  CAS  Google Scholar 

  • Brody, E., and Abelson, J. 1985. The “spliceosome”: Yeast premessenger RNA associates with a 40S complex in a splicing-dependent reaction.Science 228: 963–967.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. T., Morris, G. F., Chodchoy, N., Sprecher, C., and Marzluff, W. F. 1985. Structure of the sea urchin Ul RNA repeat.Nucleic Acids Res.13: 537–556.

    Article  PubMed  CAS  Google Scholar 

  • Burke, J. M., and RajBhandary, U. L. 1982. Intron within the large rRNA gene ofN. crassa mitochondria: A long open reading frame and a consensus sequence possibly important in splicing.Cell 31: 509–520.

    Article  PubMed  CAS  Google Scholar 

  • Burke, J. M., Breitenberger, C., Heckman, J. E., Dujon, B., and RajBhandary, U. L. 1984. Cytochromeb gene ofNeurospora crassa mitochondria. Partial sequence and location of introns at sites different from those inSaccharomyces cerevisiae andAspergillus nidulans. J. Biol. Chem.259: 504–511.

    CAS  Google Scholar 

  • Carbon, P., Haumont, E., Fournier, M., de Henau, S., and Grosjean, H. 1983. Site-directedin vitro replacement of nucleosides in the anticodon loop of tRNA: Application to the study of structural requirements for queine insertase activity.EMBO J. 2: 1093–1097.

    PubMed  CAS  Google Scholar 

  • Card, C. O., Morris, G. F., Brown, D. T., and Marzluff, W. F. 1982. Sea urchin small nuclear RNA genes are organized in distinct tandemly repeating units.Nucleic Acids Res.10: 7677–7688.

    Article  PubMed  CAS  Google Scholar 

  • Castagnoli, L., Ciliberto, G., and Cortese, R. 1982. Processing of eukaryotic tRNA precursors: Secondary structure of the precursor specific sequences affects the rate but not the accuracy of the processing reactions.Nucleic Acids Res.10: 4135–4148.

    Article  PubMed  CAS  Google Scholar 

  • Chang, K. S., Rothblum, K. N., and Schwartz, R. J. 1985. The complete sequence of the chicken a-cardiac actin gene: A highly conserved vertebrate gene.Nucleic Acids Res.13: 1223–1237.

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto, G., Buckland, R., Cortese, R., and Philipson, L. 1985. Transcription signals in embryonicXenopus laevis Ul RNA genes.EMBO J.4: 1537–1543.

    PubMed  CAS  Google Scholar 

  • Clary, D. O., Wahleithner, J. A., and Wolstenholme, D. R. 1984. Sequences and arrangement of the genes for cytochromeb, URF1, URF4L, URF4, URF5, URF6, and five tRNAs inDrosophila mitochondrial DNA.Nucleic Acids Res.12: 3747–3762.

    Article  PubMed  CAS  Google Scholar 

  • Colby, D., Leroy, P. S., and Guthrie, C. 1981. Yeast tRNA precursor mutated at a splice junction is correctly processedin vivo. Proc. Natl. Acad. Sci. USA 378: 415–419.

    Article  Google Scholar 

  • Cooley, L., Appel, B., and Söll, D. 1982. Post-transcriptonal nucleotide addition is responsible for the formation of the 5’ terminus of histidine tRNA.Proc. Natl. Acad. Sci. USA 79: 6475–6479.

    Article  PubMed  CAS  Google Scholar 

  • Daskal, Y. 1981. Perichromatin granules. In: Busch, H., ed.,The Cell Nucleus, New York, Academic Press, Vol. VIII, pp. 117–138.

    Google Scholar 

  • Dawson, A. J., Jones, V. P., and Leaver, C. J. 1984. The apocytochromeb gene in maize mitochondria does not contain introns and is preceded by a potential ribosome binding site.EMBO J.3: 2107–2113.

    PubMed  CAS  Google Scholar 

  • DeLange, T., Berkvens, T. M., Veerman, H. J. G., Frasch, A. C. C., Barry, D. J., and Borst, P. 1984. Comparison of the genes coding for the common 5’ terminal sequence of messenger RNAs in three trypanosome species.Nucleic Acids Res.12: 4431–4443.

    Article  CAS  Google Scholar 

  • Denison, R. A., and Weiner, A. M. 1982. Human Ul RNA pseudogenes may be generated by both DNA- and RNA-mediated mechanisms.Mol. Cell. Biol. 2: 815–828.

    PubMed  CAS  Google Scholar 

  • Denison, R. A., Van Arsdell, S. W., Berstein, L. B., and Weiner, A. M. 1981. Abundant pseudogenes for small nuclear RNAs are dispersed in the human genome.Proc. Natl. Acad. Sci. USA 78: 810–814.

    Article  PubMed  CAS  Google Scholar 

  • Deno, H., Kato, A., Shinozaki, K., and Sugiura, M. 1982. Nucleotide sequences of tobacco chloroplast genes for elongator tRNAMet and tRNAval (UAC): The tRNAval (UAC) gene contains a long intron.Nucleic Acids Res.10: 7511–7520.

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann, C. L., Koerner, T. J., and Tzagoloff, A. I984a. Assembly of the mitochondrial membrane system.CBP1, a yeast nuclear gene involved in 5’ end processing of cytochromeb pre-mRNA.J. Biol. Chem. 259: 4722–4731.

    Google Scholar 

  • Dieckmann, C. L., Homison, G., and Tzagoloff, A. 1984b. Assembly of the mitochondria] membrane system. Nucleotide sequence of a yeast nuclear gene(CBP1) involved in 5’ end processing of cytochromeb premRNA.J. Biol. Chem. 259: 4732–4738.

    PubMed  CAS  Google Scholar 

  • Dillon, L. S. 1978.The Genetic Mechanism and the Origin of Life, New York, Plenum Press. Dillon, L. S. 1983.The Inconstant Gene, New York, Plenum Press.

    Google Scholar 

  • Domdey, H., Apostol, B., Lin, R. J., Newman, A., Brody, E., and Abelson, J. 1984. Lariat structures arein vivo intermediates in yeast pre-mRNA splicing.Cell 39: 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Dudov, K. P., and Dabeva, M. D. 1983. Post-transcriptional regulation of ribosome formation in the nucleus of regenerating rat liver.Biochem. J. 210: 183–192.

    PubMed  CAS  Google Scholar 

  • Earley, J. M., Roebuck, K. A., and Stumph, W. E. 1984. Three linked chicken Ul RNA genes have limited flanking DNA sequence homologies that reveal potential regulatory signals.Nucleic Acids Res.12: 7411–7421.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, M. S., and Trewyn, R. W. 1984. Inosine biosynthesis in transfer RNA by an enzymatic insertion of hypoxanthine.J. Biol. Chem. 259: 2407–2410.

    PubMed  CAS  Google Scholar 

  • Engelke, D. R., Gegenheimer, P., and Abelson, J. 1985. Nucleolytic processing of a tRNAArg-tRNAAsp dimeric precursor by a homologous component fromSaccharomyces cerevisiae. J. Biol. Chem.260: 1271–1279.

    CAS  Google Scholar 

  • Epstein, P., Reddy, R., Henning, D., and Busch, H. 1980. The nucleotide sequence of U6 (4.7S) RNA.J. Biol. Chem. 255: 8901–8906.

    PubMed  CAS  Google Scholar 

  • Falkenthal, S., Parker, V. P., and Davidson, N. 1985. Developmental variations in the splicing pattern of transcripts from theDrosophila gene encoding myosin alkali light chain result in different carboxyl-terminal amino acid sequences.Proc. Natl. Acad. Sci. USA 82: 449–453.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, H. D., Dodgson, J. B., Hughes, S., and Engel, J. D. 1984. An unusual 5’ splice sequence is efficiently utilizedin vivo. Proc. Natl. Acad. Sci. USA 81: 2733–2737.

    Article  CAS  Google Scholar 

  • Forbes, D. J., Kornberg, T. B., and Kirschner, M. W. 1983. Small nuclear RNA transcription and ribonucleoprotein assembly in earlyXenopus development.J. Cell Biol. 97: 62–72.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, D. J., Kirschner, M. W., Caput, D., Dahlberg, J. E., and Lund, E. 1984. Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos ofXenopus laevis. Cell 38: 681–689.

    Article  CAS  Google Scholar 

  • Fradin, A., Jove, R., Hemenway, C., Keiser, H. D., Manley, J. L., and Prives, C. 1984. Splicing pathways of SV40 mRNAs inX. laevis oocytes differ in their requirements for snRNPs.Cell 37: 927–936.

    Article  PubMed  CAS  Google Scholar 

  • Frendewey, D., and Keller, W. 1985. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences.Cell 42: 355–367.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, T., Takaoka, C., Matsui, H., and Taniguchi, T. 1983. Structure of the human interleukin 2 gene.Proc. Natl. Acad. Sci. USA 80: 7437–7441.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi, Y. 1978. “Pretranscriptional capping” in the biosynthesis of cytoplasm polyhedrosis virus mRNA.Proc. Natl. Acad. Sci. USA 75:1086–1090.

    Google Scholar 

  • Garriga, G., and Lambowitz, A. M. 1984. RNA splicing inNeurospora mitochondria. Self-splicing of a mitochondrial intronin vitro. Cell 39: 631–641.

    CAS  Google Scholar 

  • Garriga, G., Bertrand, H., and Lambowitz, A. M. 1984. RNA splicing inNeurospora mitochondria: Nuclear mutants defective in both splicing and 3’ end synthesis of the larger rRNA.Cell 36: 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Gegenheimer, P., and Apirion, D. 1981. Processing of procaryotic ribonucleic acid.Microbiol. Rev. 45: 502–541.

    PubMed  CAS  Google Scholar 

  • Gegenheimer, P., Gabins, H. J., Peebles, C. L., and Abelson, J. 1983. An RNA ligase from wheat germ which participates in transfer RNA splicingin vitro. J. Biol. Chem.258: 8365–8373.

    CAS  Google Scholar 

  • Gerlinger, P., Krust, A., LeMeur, M., Perrin, F., Cochet, M., Gannon, F., Dupret, D., and Chambon, P. 1982. Multiple initiation and polyadenylation sites for the chicken ovomucoid transcription unit.J. Mol. Biol. 162: 345–364.

    Article  PubMed  CAS  Google Scholar 

  • Ghora, B. K., and Apirion, D. 1978. Structural analysis andin vitro processing to p5 rRNA of a 9S RNA molecule isolated from anme mutant ofE. coll. Cell 15: 1055–1066.

    CAS  Google Scholar 

  • Ghora, B. K., and Apirion, D. 1979. 5S rRNA is contained within a 25S rRNA that accumulates in mutants ofE. coli defective in processing of rRNA.J. Mol. Biol. 127: 507–513.

    Google Scholar 

  • Gidoni, D., Kadonaga, J., Barrera-Saldoaa, H., Takahachi, K., Chambon, P., and Tijan, R. 1985. Bidirectional SV40 transcription mediated by tandem Spi binding interactions.Science.230: 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W. 1978. Why genes in pieces?Nature (London) 271: 501.

    Article  CAS  Google Scholar 

  • Green, M. R., Grimm, M. F., Goewert, R. R., Collins, R. A., Cole, M. D., Lambowitz, A. M., Heckman, J. E., Yin, S., and RajBhandary, U. L. 1981. Transcripts and processing patterns for the ribosomal RNA and transfer RNA region ofNeurospora crassa mitochondrial DNA.J. Biol. Chem. 256: 2027–2034.

    PubMed  CAS  Google Scholar 

  • Guerrier-Takada, C., McClain, W. H., and Altman, S. 1984. Cleavage of tRNA precursors by the RNA subunit ofE. coli ribonuclease P(M1RNA) is influenced by 3’-proximal CCA in the substrates.Cell 38: 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Hammarström, K., Westin, G., Bark, C., Zabielski, J., and Petterson, U. 1984. Genes and pseudogenes for human U2 RNA. Implications for the mechanism of pseudogene formation.J. Mol. Biol. 179: 157–169.

    Article  PubMed  Google Scholar 

  • Hashimoto, C., and Steitz, J. A. 1984. U4 and U6 RNAs coexist in a single small nuclear ribonucleoprotein particle.Nucleic Acids Res.12: 3283–3293.

    Article  PubMed  CAS  Google Scholar 

  • Haumont, E., Fournier, M., deHenau, S., and Grosjean, H. 1984. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsP: The dependence on the anticodon sequence.Nucleic Acids Res.12: 2705–2715.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, N., and Keller, W. 1983. Splicing ofin vitro synthesized messenger RNA precursors in HeLa cell extracts.Cell 35: 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J., McGraw, P., and Tzagoloff, A. 1985. A mutation in yeast mitochondrial DNA results in a precise excision of the terminal intron of the cytochromeb gene.J. Biol. Chem. 260: 3235–3238.

    PubMed  CAS  Google Scholar 

  • Hindley, J., and Phear, G. A. 1984. Sequence of the cell division gene CDC2 fromSchizosaccharomyces pombe: Patterns of splicing and homology to protein kinases.Gene 31: 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch, A. G., and Fink, G. R. 1983. Repeated DNA sequences upstream fromHISI also occur at several other co-regulated genes inSaccharomyces cerevisiae. J. Biol. Chem.258: 5238–5247.

    CAS  Google Scholar 

  • Hobart, P. M., Fogliano, M., O’Connor, B. A., Schaffer, I. M., and Chirgwin, J. M. 1984. Human renin gene: Structure and sequence analysis.Proc. Natl. Acad. Sci. USA 81: 5026–5030.

    Article  PubMed  CAS  Google Scholar 

  • Htun, H., Lund, E., and Dahlberg, J. E. 1984. Human UI RNA genes contain an unusually sensitive nuclease SI cleavage site within the conserved 3’ flanking region.Proc. Natl. Acad. Sci. USA 81: 7288–7292.

    Article  PubMed  CAS  Google Scholar 

  • Htun, H., Lund, E., Westin, G., Pettersson, U., and Dahlberg, J. E. 1985. Nuclease S1-sensitive sites in multigene families: Human U2 small nuclear RNA genes.EMBO J.4: 1839–1846.

    PubMed  CAS  Google Scholar 

  • Huang, C. C., Hammond, C., and Bishop. J. M. 1985. Nucleotide sequence and topography of chickenc-fps. Genesis of a retroviral oncogene encoding a tyrosine-specific protein kinase.J. Mol. Biol. 181: 175–186.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, A., and Favreau, M. 1983. Possible involvement of poly(A) in protein synthesis.Nucleic Acids Res.11: 6353–6368.

    Article  PubMed  CAS  Google Scholar 

  • Jacquier, A., and Dujon, B. 1985. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene.Cell 41: 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. D., Ogden, R., Johnson, P., Abelson, J., Dembeck, P., and Itakura, K. 1980. Transcription and processing of a yeast tRNA gene containing a modified intervening sequence.Proc. Natl. Acad. Sci. USA 77: 2564–2568.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. F., and Abelson, J. 1983. The yeast tRNATYr gene intron is essential for correct modification of its tRNA product.Nature (London) 302: 681–687.

    Article  CAS  Google Scholar 

  • Kaine, B. P., Gupta, R., and Woese, C. R. 1983. Putative introns in tRNA genes of prokaryotes.Proc. Natl. Acad. Sci. USA 80: 3309–3312.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M., Najarian, R., Haslinger, A., Valenzuela, P., Welch, J., and Fogel, S. 1984. Primary structure and transcription of an amplified genetic locus: TheCUP1 locus of yeast.Proc. Natl. Acad. Sci. USA 81: 337–341

    Article  PubMed  CAS  Google Scholar 

  • Karlin-Neumann, G. A., Kohorn, B. D., Thornber, J. P., and Tobin, E. M. 1985. A chlorophyll a/b-protein encoded by a gene containing an intron with characteristics of a transposable element.J. Mol. Appl. Genet. 3: 45–61.

    PubMed  CAS  Google Scholar 

  • Kato, N., and Harada, F. 1981. Nucleotide sequence of nuclear 5.7S RNA of mouse cells.Biochem. Biophys. Res. Commun. 99: 1477–1485.

    Article  PubMed  CAS  Google Scholar 

  • Kaufer, N. F., Fried, H. M., Schwindinger, W. F., Jasin, M., and Warner, J. R. 1983. Cyclohexamide resistance in yeast: the gene and its protein.Nucleic Acids Res. 11:3123-3135.

    Google Scholar 

  • Kejzlarovä-Lepesant, J., Brock, H. W., Moreau, J., Dubertret, M. L., Billault, A., and Lepesant, J. A. 1984. A complete and a truncated UI snRNA gene ofDrosophila melanogaster are found as inverted repeats at region 82E of the polytene chromosomes.Nucleic Acids Res.12: 8835–8846.

    Article  PubMed  Google Scholar 

  • Keller, E. B., and Noon, W. A. 1984. Intron splicing: A conserved internal signal in introns of animal premRNAs.Proc. Natl. Acad. Sci. USA 81: 7417–7420.

    Article  PubMed  CAS  Google Scholar 

  • Keller, E. B., and Noon, W. A. 1985. Intron splicing: A conserved internal signal in introns ofDrosophila premRNAs.Nucleic Acids Res.13: 4971–4981.

    Article  PubMed  CAS  Google Scholar 

  • Keller, M., and Michel, F. 1985. The introns of theEuglena gracilis chloroplast gene which codes for the 32 kDa protein of photosystem II. Evidence for structural homologies with class II introns.FEBS Lett.179: 69–73.

    Article  CAS  Google Scholar 

  • Keller, W. 1984. The RNA lariat: A new ring to the splicing of mRNA precursors.Cell 39: 423–425.

    Article  PubMed  CAS  Google Scholar 

  • King, T. C., and Schlessinger, D. 1984. SI nuclease mapping analysis of ribosomal RNA processing in wild type and processing deficientEscherichia coli. J. Biol. Chem.258: 12034–12042.

    Google Scholar 

  • King, T. C., Sirdeshmukh, R., and Schlessinger, D. 1984. RNase III cleavage is obligate for maturation but not for function ofEscherichia coli pre-23S rRNA.Proc. Natl. Acad. Sci. USA 81: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Kinnaird, J. H., and Fincham, J. R. S. 1983. The complete nucleotide sequence of theNeurospora crassa am (NADP-specific glutamate dehydrogenase) gene.Gene 26: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Knapp, G., Ogden, R. C., Peebles, C. L., and Abelson, J. 1979. Splicing of yeast tRNA precursors. Structure of the reaction intermediates.Cell 18: 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Koller, B., Gingrich, J. C., Stiegler, G. L., Farley, M. A., Delius, H., and Hallick, R. B. 1984. Nine introns with conserved boundary sequences in theEuglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene.Cell 36: 545–553.

    Article  PubMed  CAS  Google Scholar 

  • Krainer, A. R., Maniatis, T., Ruskin, B., and Green, M. R. 1984. Normal and mutant human B-globin premRNAs are faithfully and efficiently splicedin vivo. Cell 36: 993–1005.

    Article  CAS  Google Scholar 

  • Krämer, A., Keller, W., Appel, B., and LĂĽhrmann, R. 1984. The 5’ terminus of the RNA moiety of UI small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors.Cell 38: 299–307.

    Article  PubMed  Google Scholar 

  • Krol, A., Branlant, C., Lazar, E., Gallinaro, H., and Jacob, M. 1981. Primary and secondary structures of chicken, rat and man nuclear U4 RNAs. Homologies with U I and U5 RNAs.Nucleic Acids Res.9: 2699–2716.

    Article  PubMed  CAS  Google Scholar 

  • Krol, A., Ebel, J. P., Rinke, J., and LĂĽhrmann, R. 1983. Ul, U2, and U5 small nuclear RNAs are found in plant cells. Complete nucleotide sequence of the U5 RNA family from pea nuclei.Nucleic Acids Res.11: 8583–8594.

    Article  PubMed  CAS  Google Scholar 

  • Krol, A., Lund, E., and Dahlberg, J. E. 1985. The two embryonic Ul RNA genes ofXenopus laevis have both common and gene-specific transcription signals.EMBO J.4: 1529–1535.

    PubMed  CAS  Google Scholar 

  • Laird, P. W., Kooter,J. M., Loosbroeck, N., and Borst, P. 1985. Mature mRNAs ofTrypanosoma brucei possess a 5’ cap acquired by discontinuous RNA synthesis.Nucleic Acids Res.13: 4253–4266.

    Google Scholar 

  • Lamb, M. R., Anziano, P. Q., Glaus, K. R., Hanson, D. K., Klapper, H. J., Perlman, P. S., and Mahler, H. R.

    Google Scholar 

  • Functional domains in introns. RNA processing intermediates incis-and trans-acting mutants in the penultimate intron of the mitochondria) gene for cytochromeb. J. Biol. Chem. 258:1991–1999.

    Google Scholar 

  • Langford, C. J., and Gallwitz, D. 1983. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts.Cell 33: 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Langford, C. J., Nellen, W., Niessing, J., and Gallwitz, D. 1983. Yeast is unable to excise foreign intervening sequences from hybrid gene transcripts.Proc. Natl. Acad. Sci. USA 80: 1496–5000.

    Article  PubMed  CAS  Google Scholar 

  • Langford, C. J., Kling, F. J., Donath, C., and Gallwitz, D. 1984. Point mutations identify the conserved, intron-contained TACTAAC box as an essential splicing signal sequence in yeast.Cell 36: 645–653.

    Article  PubMed  CAS  Google Scholar 

  • Lazowska, J., Jacq, C., and Slonimski, P. P. 1980. Sequence of introns and flanking exons in wild-type andbox 3 mutants of cytochromeb reveals an interlaced splicing protein coded by an intron.Cell 22:333–348. Lazowska, J., Jacq, C., and Slonimski, P. P. 1981. Splice points of the third intron in the yeast mitochondrial cytochromeb gene.Cell 27: 12–14.

    Article  Google Scholar 

  • Lee, J. S., and Verma, D. P. S. 1984. Structure and chromosomal arrangement of leghemoglobin genes in kidney beans suggest divergence in soybean leghemoglobin gene loci following tetraploidization.EMBO J.3: 2745–2752.

    PubMed  CAS  Google Scholar 

  • Lee, M. C., and Knapp, G. 1985. Transfer RNA splicing inSaccharomyces cerevisiae. Secondary and tertiary structures of the substrates.J. Biol. Chem. 260: 3108–3115.

    PubMed  CAS  Google Scholar 

  • Lenardo, M. J., Dorfman, D. M., Reddy, L. V., and Donelson, J. E. 1985. Characterization of theTrypanosoma brucei ribosomal RNA gene and transcript: The 5S rRNA is a spliced-leader-independent species.Gene 35: 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, B. 1980a. Alternatives for splicing: Recognizing the ends of the introns.Cell 22: 324–326.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, B. 1980b. Alternatives for splicing: An intron-coded protein.Cell 22: 645–646.

    Article  PubMed  CAS  Google Scholar 

  • Li, S. S. L., Tiano, H. F., Fukasawa, K. M., Yagi, K., Shimizu, M., Sharief, F. S., Nakashima, Y., and Pan, Y. C. E. 1985. Protein structure and gene organization of mouse lactate dehydrogenase-A isozyme.Eur. J. Biochem. 149: 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W. L., and Pederson, T. 1984. Ribonucleoprotein organization of eukaryotic RNA. XXXI. Structure of the U1 small nuclear ribonucleoprotein.J. Mol. Biol. 180: 947–960.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M. H., Reddy, R., Henning, D., Spector, D., and Busch, H. 1984. Primary and secondary structure of dinoflagellate U5 small nuclear RNA.Nucleic Acids Res.12: 1529–1542.

    Article  PubMed  CAS  Google Scholar 

  • Lund, E., and Dahlberg, J. E. 1984. True genes for human Ul small nuclear RNA.J. Biol. Chem. 259: 2013–2021.

    PubMed  CAS  Google Scholar 

  • Mackow, E. R., and Chang, F. N. 1985. Processing of precursor ribosomal RNA and the presence of a modified ribosome assembly scheme inEscherichia coli relaxed strain.FEBS Lett.182: 407–412.

    Article  PubMed  CAS  Google Scholar 

  • Macreadie, I. G., Scott, R. M., Zinn, A. R., and Butow, R. A. 1985. Transposition of an intron in yeast mitochondria requires a protein encoded by that intron.Cell 41: 395–402.

    Article  PubMed  CAS  Google Scholar 

  • Malissen, M., Malissen, B., and Jordan, B. R. 1982. Exonintron organization and complete nucleotide sequence of anHLA gene.Proc. Natl. Acad. Sci. USA 79: 893–897.

    Article  PubMed  CAS  Google Scholar 

  • Manser, T., and Gesteland, R. F. 1982. Human Ulloci: Genes for human U1 RNA have dramatically similar genomic environments.Cell 29: 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Marzluff, W. F., Brown, D. T., Lobo, S., and Wang, S. S. 1983. Isolation and characterization of two linked mouse Ulb small nuclear RNA genes.Nucleic Acids Res.11: 6255–6270.

    Article  PubMed  CAS  Google Scholar 

  • Mason, P. J., Jones, M. B., Elkington, J. A., and Williams, J. G. 1985. Polyadenylation of theXenopus Ăźl globin mRNA at a downstream minor site in the absence of the major site and utilization of an AAUACA polyadenylation signal.EMBO J.4: 205–211.

    PubMed  CAS  Google Scholar 

  • Mattaj, I. W., and DeRobertis, E. M. 1985. Nuclear segregation of U2 snRNA requires binding specific snRNP proteins.Cell 40: 111–118.

    Article  PubMed  CAS  Google Scholar 

  • McGraw, P., and Tzagoloff, A. 1983. Assembly of the mitochondrial membrane system. Characterization of a yeast nuclear gene involved in the processing of the cytochromeb pre-mRNA.J. Biol. Chem. 258: 9459–9468.

    PubMed  CAS  Google Scholar 

  • Michiels, F., Muyldermans, S., Hamers, R., and Matthyssens, G. 1985. Putative regulatory sequences for the transcription of mini-exons inTrypanosoma brucei as revealed by SI sensitivity.Gene 36: 263–270.

    Article  PubMed  CAS  Google Scholar 

  • Milhausen, M., Nelson, R. G., Sathers, S., Selkirk, M., and Agabian, N. 1984. Identification of a small RNA containing the trypanosome spliced leader: A donor of shared 5’ sequences of trypanosomatid mRNAs?Cell 38: 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Mitlin, J. A., and Cannon, M. 1984. Defective processing of ribosomal precursor RNA inSaccharomyces cerevisiae. Biochem. J.220: 461–467.

    CAS  Google Scholar 

  • Mitra, G., and Warner, J.R. 1984. A yeast ribosomal protein gene whose intron is in the 5’ leader.J. Biol. Chem. 259: 9218–9224.

    PubMed  CAS  Google Scholar 

  • Montandon, P. E., and Stutz, E. 1983. Nucleotide sequence of aEuglena gracilis chloroplast genome region for the elongation factor Tu; evidence for a spliced mRNA.Nucleic Acids Res.11: 5877–5892.

    Article  PubMed  CAS  Google Scholar 

  • Montell, C., Fisher, E. F., Caruthers, M.H., and Berk, A. J. 1983. Inhibition of RNA cleavage but not polyadenylation by a, point mutation in mRNA 3’ consensus sequence AAUAAA.Nature (London) 305: 600–605.

    Google Scholar 

  • Moore, C. L., and Sharp, P. A. 1984. Site-specific polyadenylation in a cell-free reaction.Cell 36: 58 1591.

    Google Scholar 

  • Moore, C. L., and Sharp, P. A. 1985. Accurate cleavage and polyadenylation of exongenous RNA substrate.Cell 41: 845–855.

    Article  PubMed  CAS  Google Scholar 

  • Moriuchi, T., Chang, H. C., Denome, R., and Silver, J. 1983. Thy-1 cDNA sequence suggests a novel regulatory mechanism. Nature (London)301: 80–82.

    Article  CAS  Google Scholar 

  • Mount, S. M., and Steitz, J. A. 1981. Sequence of U1 RNA fromDrosophila melanogaster: Implications for Ul secondary structure and possible involvement in splicing.Nucleic Acids Res.9: 6351–6368.

    Article  PubMed  CAS  Google Scholar 

  • Mount, S. M., Pettersson, I., Hinterberger, M., Karmas, A., and Steitz, J. A. 1983. The Ul small nuclear RNA-protein complex selectively binds a 5’ splice sitein vitro. Cell 33: 509–518.

    CAS  Google Scholar 

  • Moussa, N. M., Lobo, S. M., and Marzluff, W. F. 1985. Expression of a mouse Ulb gene in mouse L cells.Gene 36: 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J. T., Burgess, R. R., Dahlberg, J. E., and Lund, E. 1982. Transcription of a gene for human Ul small nuclear RNA. Cell29: 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Nobrega, F. G., and Tzagoloff, A. 1980. Assembly of the mitochondrial membrane system. DNA sequence and organization of the cytochromeb gene inSaccharomyces cerevisiae D293–10B.J. Biol. Chem. 255: 98289837.

    Google Scholar 

  • Nogi, Y., and Fukasawa, T. 1984. Nucleotide sequence of the yeast regulatory geneGAL80. Nucleic Acids Res.12: 9287–9298.

    Article  CAS  Google Scholar 

  • Nyunoya, H., and Lusty, C. J. 1984. Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain.J. Biol. Chem. 259: 9790–9798.

    PubMed  CAS  Google Scholar 

  • Ogden, R. C., Lee, M. C., and Knapp, G. 1984. Transfer RNA splicing inSaccharomyces cerevisiae: Defining the substrates.Nucleic Acids Res.12: 9367–9382.

    Article  PubMed  CAS  Google Scholar 

  • Okada, N., Sakamoto, K., Itoh, Y., and Oshima, Y. 1982. Sequence determination of rat U5 RNA using a chemical modification procedure for counteracting sequence compression.J. Biochem. 91: 1281–1291.

    PubMed  CAS  Google Scholar 

  • Osinga, K. A., Vries, E., Horst, G., and Tabak, H. F. 1984. Processing of yeast mitochondrial messenger RNAs at a conserved dodecamer sequence.EMBO J.3: 829–834.

    PubMed  CAS  Google Scholar 

  • Pace, B., Stahl, D. A., and Pace, N. R. 1984. The catalytic element of a ribosomal RNA-processing complex.J. Biol. Chem. 259: 11454–11458.

    PubMed  CAS  Google Scholar 

  • Padgett, R. A., Konarska, M. M., Grabowski, P. J., Hardy, S. F., and Sharp, P. A. 1984. Lariat RNA’s as intermediates and products in the splicing of messenger RNA precursors.Science 225: 898–903.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, N., Hellung-Larsen, P., and Engberg, J. 1985. Small nuclear RNAs in the ciliateTetrahymena. Nucleic Acids Res.13: 4203–4224.

    Article  CAS  Google Scholar 

  • Peebles, C. L., Ogden, R. C., Knapp, O., and Abelson, J. 1979. Splicing of yeast tRNA precursors: A two-stage reaction.Cell 18: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Petterson, I., Hinterberger, M., Mimori, T., Gottlieb, E., and Steitz, J. A. 1984. The structure of mammalian small nuclear ribonucleoproteins: Identification of multiple protein components reactive with anti(Ul)RNP and anti-Sm autoantibodies.J. Biol. Chem. 259: 5907–5914.

    Google Scholar 

  • Pikielny, C. W., and Rosbash, M. 1985. mRNA splicing efficiency in yeast and the contribution of nonconserved sequences.Cell 41: 119–126.

    Google Scholar 

  • Pillar, T., Lang, B. F., Steinberger, L. I., Vogt, B., and Kaudervitz, F. 1983. Expression of the “split gene”cob in yeast mtDNA. Nuclear mutations specifically block the excision of different introns from its primary transcript.J. Biol. Chem. 258: 7954–7959.

    PubMed  CAS  Google Scholar 

  • Ray, B. K., Singh, B., Roy, M. K., and Apirion, D. 1982. Ribonuclease E is involved in the processing of 5-S rRNA from a number of rRNA transcription units.Eur. J. Biochem. 125: 283–289.

    CAS  Google Scholar 

  • Reddy, R., Henning, D., and Busch, H. 1979. Nucleotide sequence of nucleolar U3B RNA.J. Biol. Chem. 254: 11097–11105.

    PubMed  CAS  Google Scholar 

  • Reddy, R., Henning, D., and Busch, H. 1980. Substitutions, insertions, and deletions in two highly conserved U3 RNA species.J. Biol. Chem. 255: 7029–7033.

    PubMed  CAS  Google Scholar 

  • Reddy, R., Henning, D., and Busch, H. 198la. The primary nucleotide sequence of U4 RNA.J. Biol. Chem. 256: 3532–3538.

    Google Scholar 

  • Reddy, R., Li, W. Y., Henning, D., Choi, Y. C., Nohga, K., and Busch, H. 198Ib. Characterization and subcellular localization of 7–8S RNAs of Novikoff hepatoma.J. Biol. Chem. 256: 8452–8457.

    Google Scholar 

  • Reddy, R., Henning, D., and Busch, H. 1981c. Pseudouridine residues in the 5’-terminus of uridine-rich nuclear RNAI (U1 RNA).Biochem. Biophys. Res. Commun. 98: 1076–1083.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, R., Rothblum, L. I., Subrahmanyam, C. S., Liu, M.-H., Henning, D., Cassidy, B., and Busch, H. 1983a. The nucleotide sequence of 8S RNA bound to preribosomal RNA of Novikoff hepatoma.J. Biol. Chem. 258: 584–589.

    PubMed  CAS  Google Scholar 

  • Reddy, R., Henning, D., Liu, M. H., Spector, D., and Busch, H. 1985a. Identification and characterization of a polyadenylated small RNA (s-polyA+ RNA) in dinoflagellates.Biochem. Biophys. Res. Commun. 127: 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, R., Henning, D., Chirala, S., Rothblum, L., Wright, D., and Busch, H. 1985b. Isolation and characterization of three rat U3 RNA pseudogenes.J. Biol. Chem. 260: 5715–5719.

    PubMed  CAS  Google Scholar 

  • Reed, R., and Maniatis, T. 1985. Intron sequences involved in lariat formation during pre-mRNA splicing.Cell 41: 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, R., Appel, B., Bringmann, P., Rinke, J., and LĂĽhrmann, R. 1984. 5’-Terminal caps of snRNAs are reactive with antibodies specific for 2,2,7-trimethylguanosine in whole cells and nuclear matrices.Exp. Cell Res. 154: 548–560.

    Google Scholar 

  • Rinke, J., Appel, B., Blöcker, H., Frank, R., and LĂĽhrmann, R. 1984. The 5’-terminal sequence of UI RNA complementary to the consensus 5’ splice site of hnRNA is single-stranded in intact Ul snRNP particles.Nucleic Acids Res.12: 4111–4126.

    Article  PubMed  CAS  Google Scholar 

  • Rixon, M. W., Chung, D. W., and Davie, E. W. 1985. Nucleotide sequence of the gene for the y chain of human fibrinogen.Biochemistry 24: 2077–2086.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, R. R., and Davidson, N. 1981. Analysis of aDrosophila tRNA gene cluster: Two tRNALe° genes contain intervening sequences.Cell 22: 251–259.

    Article  Google Scholar 

  • Ro-Choi, T. S., Choi, Y. C., Henning, D., McCloskey, J., and Busch, H. 1975. Nucleotide sequence of U-2 ribonucleic acid. Sequence of the 5’-terminal oligonucleotide.J. Biol. Chem. 250: 3921–3928.

    PubMed  CAS  Google Scholar 

  • Roe, B. A., Ma, D. P., Wilson, R. K., and Wong, J. F. H. 1985. The complete nucleotide sequence of theXenopus laevis mitochondrial genome.J. Biol. Chem. 260: 9759–9774.

    PubMed  CAS  Google Scholar 

  • Rogers, J., and Wall, R. 1980. A mechanism for RNA splicing.Proc. Natl. Acad. Sci. USA 77: 1877–1879.

    Article  PubMed  CAS  Google Scholar 

  • Roop, D. R., Kristo, P., Stumph, W. E., Tsai, M. J., and O’Malley, B. W. 1981. Structure and expression of a chicken gene coding for U1 RNA.Cell 23: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, E. T., Tansey, T. R., and Ruderman, J. V. 1983. Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization ofSpisula oocytes.J. Mol. Biol. 166: 309–327.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, B., and Green, M. R. 1985. An RNA processing activity that debranches RNA lariats.Science 229: 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, B., Greene, J. M., and Green, M. R. 1985. Cryptic branch point activation allows accuratein vitro splicing of human Ăź-globin intron mutants.Cell 41: 833–844.

    Article  PubMed  CAS  Google Scholar 

  • Salditt-Georgieff, M., Harpold, M., Chen-Kiang, S., and Darnell, J. E. 1980. The addition of 5’-cap structures occurs early in hnRNA synthesis and prematurely terminated molecules are capped.Cell 19: 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Saluz, H. P., Schmidt, T., Dudler, R., Altwegg, M., Stumm-Zollinger, E., Kubli, E., and Chen, P. S. 1983. The genes coding for 4 snRNAs ofDrosophila melanogaster: Localization and determination of gene numbers.Nucleic Acids Res.11: 77–90.

    Article  PubMed  CAS  Google Scholar 

  • Sass, H., and Pederson, T. 1984. Transcription-dependent localization of UI and U2 small nuclear ribonucleoproteins at major sites of gene activity in polytene chromosomes.J. Mol. Biol. 180: 911–926.

    Article  PubMed  CAS  Google Scholar 

  • Setyono, B., and Pederson, T. 1984. Ribonucleoprotein organization of eukaryotic RNA. XXX. Evidence that Ul small nuclear RNA is a ribonucleoprotein when base-paired with pre-messenger RNAin vivo. J. Mol. Biol.174: 285–295.

    Article  CAS  Google Scholar 

  • Sirdeshmukh, R., and Schlessinger, D. 1985. Ordered processing ofEscherichia coli 23S rRNAin vitro. Nucleic Acids Res.13: 5041–5054.

    Article  CAS  Google Scholar 

  • Skuzeski, J. M., Lund, E., Murphy, J. T., Steinberg, T. H., Burgess, R. R., and Dahlberg, J. E. 1984. Synthesis of human U1 RNA. II. Identification of two regions of the promoter essential for transcription initiation at position + I.J. Biol. Chem. 259: 8345–8352.

    PubMed  CAS  Google Scholar 

  • Smith, S. D., Banerjee, N., and Sitz, T. O. 1984. Gene heterogeneity: A basis for alternative 5.8S rRNA processing.Biochemistry 23: 3648–3652.

    Article  PubMed  CAS  Google Scholar 

  • Solari, A., and Deutscher, M. 1982. Subcellular localization of the tRNA processing enzyme, tRNA nucleotidyltransferase, inXenopus laevis oocytes and in somatic cells.Nucleic Acids Res.10: 4397–4407.

    Google Scholar 

  • Stahl, D. A., Pace, B., Marsh, T., and Pace, N. R. 1984. The ribonucleoprotein substrate for a ribosomal RNA-processing nuclease.J. Biol. Chem. 259: 11448–11453.

    PubMed  CAS  Google Scholar 

  • Standring, D. N., Venegas, A., and Rutter, W. J. 1981. Yeast tRNA3eu gene transcribed and spliced in a HeLa cell extract.Proc. Natl. Acad. Sci. USA 78: 5963–5967.

    Article  PubMed  CAS  Google Scholar 

  • Stark, M. J. R., Mileham, A. J., Romanos, M. A., and Boyd, A. 1984. Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeastKluyveromyces lactis. Nucleic Acids Res.12: 6011–6030.

    Article  CAS  Google Scholar 

  • Steinmetz, A., Gubbins, E. J., and Bogorad, L. 1982. The anticodon of the maize chloroplast gene for tRNAÛÄA is split by a large intron.Nucleic Acids Res.10: 3027–3037.

    Article  PubMed  CAS  Google Scholar 

  • Stone, E. M., Rothblum, K. N., Alevy, M. C., Kuo, T. M., and Schwartz, R. J. 1985. Complete sequence of the chicken glyceraldehyde-3-phosphate dehydrogenase gene.Proc. Natl. Acad. Sci. USA 82: 1628–1632.

    Article  PubMed  CAS  Google Scholar 

  • Stroke, I. L., and Weiner, A. M. 1985. Genes and pseudogenes for rat U3A and U3B small nuclear RNA.J. Mol. Biol. 184: 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Strub, K., Galli, G., Busslinger, M., and Bimstiel, M. L. 1984. The cDNA sequences of the sea urchin U7 small nuclear RNA suggest specific contacts between histone mRNA precursor and U7 RNA during RNA processing.EMBO J.3: 2801–2807.

    PubMed  CAS  Google Scholar 

  • Sumner-Smith, M., Bozzato, R. P., Skipper, N., Davies, R. W., and Hopper, J. E. 1985. Analysis of the inducibleMELT gene ofSaccharomyces carlsbergensis and its secreted product, alpha-galactosidase (melibiase).Gene 36: 333–340.

    Article  PubMed  CAS  Google Scholar 

  • SzeberĂ©nyi, J., Roy, M. K., Vaidya, H. C., and Apirion, D. 1984. 7S RNA, containing 5S ribosomal RNA and the termination stem, is a specific substrate for the two RNA processing enzymes RNase cIII and RNase E.Biochemistry 23: 2952–2957.

    Google Scholar 

  • SzeberĂ©nyi, J., Tomcsânyi, T., and Apirion, D. 1985. Maturation of the 3’ end of 5-S ribosomal RNA fromEscherichia coli. Eur. J. Biochem.149: 113–118.

    Article  Google Scholar 

  • Taber, R. L., and Vincent, W. S. 1969. Effects of cyclohexamide on ribosomal RNA synthesis in yeast.Biochem. Biophys. Res. Commun. 34: 488–494.

    Article  PubMed  CAS  Google Scholar 

  • Tani, T., Watanabe-Nagasu, N., Okada, N., and Ohshima, Y. 1983. Molecular cloning and characterization of a gene for rat U2 small nuclear RNA.J. Mol. Biol. 168: 579–594.

    Article  PubMed  CAS  Google Scholar 

  • Tatei, K., Takemura, K., Mayeda, A., Fujiwara, Y., Tanaka, H., Ishihama, A., and Oshima, Y. 1984. Ul RNA-protein complex preferentially binds to both 5’ and 3’ splice junction sequences in RNA or single-stranded DNA.Proc. Natl. Acad. Sci. USA 81: 6281–6285.

    Article  PubMed  CAS  Google Scholar 

  • Treisman, R., Orkin, S. H., and Maniatis, T. 1983. Specific transcription and RNA splicing defects in five cloned (3-thalessemia genes.Nature (London) 302: 591–596.

    Article  CAS  Google Scholar 

  • Horst, G., and Tabak, H. F. 1985. Self-splicing of yeast mitochondria) ribosomal and messenger RNA precursors.Cell 40: 759–766.

    Article  PubMed  Google Scholar 

  • Waring, R. B., Davies, R. W., Lee, S., Grisi, E., Berks, M. M., and Scazzocchio, C. 1981. The mosaic organization of the apocytochromeb gene ofAspergillus nidulans revealed by DNA sequencing.Cell 27:4I1.

    Google Scholar 

  • Waring, R. B., Roy, J. A., Edwards, S. W., Scazzocchio, C., and Davies, R. W. 1985. TheTetrahymena rRNA intron self-splices inE. coli: In vivo evidence for the importance of key base-paired regions of RNA for RNA enzyme function.Cell 40: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe-Nagasu, N., Itoh, Y., Tani, T., Okano, K., Koga, N., Okada, N., and Oshima, Y. 1983. Structural analysis of gene loci for rat Ul small nuclear RNA.Nucleic Acids Res.11: 1791–1801.

    Article  PubMed  CAS  Google Scholar 

  • Weiss-Brummer, B., Rödel, G., Schweyen, R. J., and Kaudewitz, F. 1982. Expression of the split genecob in yeast: Evidence for a precursor of a “maturase” protein translated from intron 4 and preceding exons.Cell 29: 527–536.

    Article  PubMed  CAS  Google Scholar 

  • Westin, G., Lund, E., Murphy, J. T., Pettersson, U., and Dahlberg, J. E. 1984a. Human U2 and Ul RNA genes use similar transcription signals. EMBO J.3: 3295–3301.

    PubMed  CAS  Google Scholar 

  • Westin, G., Zabielski, J., Hammarström, K., Monstein, H. J., Bark, C., and Pettersson, U. 1984b. Clustered genes for human U2 RNA.Proc. Natl. Acad. Sci. USA 81: 3811–3815.

    Article  PubMed  CAS  Google Scholar 

  • Wieringa, B., Meyer, F., Reiser, J., and Weissmann, C. 1983. Unusual splice sites revealed by mutagenic inactivation of an authentic splice site of the rabbit Ăź-globin gene.Nature (London) 301: 38–43.

    Article  CAS  Google Scholar 

  • Willis, I., Hottinger, H., Pearson, D., Chisholm, V., Leupold, U., and Söll, D. 1984. Mutations affecting excision of the intron from a eukaryotic dimeric tRNA precursor.EMBO J.3: 1573–1580.

    PubMed  CAS  Google Scholar 

  • Wise, J. A., and Weiner, A. M. 1980.Dictyostelium small nuclear RNA D2 is homologous to rat nucleolar RNA U3 and is encoded by a dispersed multigene family.Cell 22: 109–116.

    CAS  Google Scholar 

  • Wise, J. A., and Weiner, A. M. 1981. The small nuclear RNAs of the cellular slime mold Dictyostelium discoideum: Isolation and characterization.J. Biol. Chem. 256: 956–963.

    PubMed  CAS  Google Scholar 

  • Wise, J. A., Tollervey, D., Maloney, D., Swerdlow, H., Dunn, E. J., and Guthrie, C. 1983. Yeast contains small nuclear RNAs encoded by single copy genes.Cell 35: 743–751.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, I., Suzuki, K., and Fukui, S. 1985. Nucleotide sequence of the extracellular glucoamylase gene STAI in the yeast Saccharomyces cerevisiae.J. Bacteriol. 161: 567–573.

    PubMed  CAS  Google Scholar 

  • Zaug, A. J., Grabowski, P. J., and Cech, T. R. 1983. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage—ligation reaction.Nature (London) 301: 578–583.

    Article  CAS  Google Scholar 

  • Zeitlin, S., and Efstratiadis, A. 1984. In vivo splicing products of the rabbit Ăź-globin pre-mRNA.Cell 39: 589–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillon, L.S. (1987). Processing the Primary Transcripts. In: The Gene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2007-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2007-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2009-6

  • Online ISBN: 978-1-4899-2007-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics