Skip to main content

Ordered Many-Electron Motions in Atoms and X-Ray Lasers

  • Chapter
Giant Resonances in Atoms, Molecules, and Solids

Part of the book series: NATO ASI Series ((NSSB,volume 151))

Abstract

Subpicosecond ultraviolet laser technology is enabling the exploration of nonlinear atomic interactions with electric field strengths considerably in excess of an atomic unit. As this regime is approached, experiments studying multiple ionization, photoelectron energy spectra, and harmonically produced radiation all exhibit strong nonlinear coupling. Peak total energy transfer rates on the order of ∼ 2 × 10−4 W/atom have been observed at an intensity of ∼ 1016 W/cm2, and it is expected that energy transfer rates approaching ∼0.1–1 W/atom will occur under more extreme conditions for which the ultraviolet electric field E is significantly greater than e/a2 0. In this high intensity regime, a wide range of new nonlinear phenomena will be open to study. These will include the possibility of ordered driven motions in atoms, molecules, and plasmas, mechanisms involving collisions, and relativistic processes such as electron-positron pair production. An understanding of these physical interactions may provide a basis for the generation of stimulated emission in the x-ray range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.K. Rhodes, Multiphoton Ionization of Atoms, Science 229:1345 (1985).

    Google Scholar 

  2. A.P. Schwarzenbach, T.S. Luk, I.A. Mclntyre, U. Johann, A. McPherson, K. Boyer, and C.K. Rhodes, Subpicosecond KrF* Excimer Laser Source, Opt. Lett. in press.

    Google Scholar 

  3. J.H. Glownia, G. Arjavalingham, P.P. Sorokin, and J.E. Rothenburg, Amplification of 350 fsec puises in XeCl excimer gain modules, Opt. Lett. 11:79 (1986).

    Google Scholar 

  4. F.V. Bunkin et A.M. Prokhorov, Interaction des électrons avec un champ intense de rayonnement optique, in: “Polarisation, Matiére et Rayonnement,” édité par La Société Francaise de Physique, Presses Universitaires de France, Paris (1969).

    Google Scholar 

  5. A. Szöke, Interpretation of electron spectra obtained from multiphoton ionisation of atoms in strong fields, J. Phys. B 18:L427 (1985).

    Google Scholar 

  6. C.K. Rhodes, Studies of collision-free nonlinear processes in the ultraviolet range, in: “Multiphoton Processes,” P. Lambropoulos and S.J. Smith, eds., Springer-Verlag, Berlin (1984).

    Google Scholar 

  7. K. Boyer and C.K. Rhodes, Atomic inner-shell excitation induced by coherent motion of outer-shell electrons, Phys. Rev. Lett. 54:1490 (1985).

    Google Scholar 

  8. A. Szöke and C.K. Rhodes, A theoretical model of inner-shell excitation by outer-shell electrons, Phys. Rev. Lett. 56:720 (1986).

    Google Scholar 

  9. T.S. Luk, U. Johann, H. Egger, H. Pummer, and C.K. Rhodes, Collisionfree multiple photon ionization of atoms and molecules at 193 nm, Phys. Rev. A 32:214 (1985).

    Google Scholar 

  10. U. Johann, T.S. Luk, H. Egger, and C.K. Rhodes, Rare gas electron energy spectra produced by collision-free multiquantum processes, Phys. Rev. A in press.

    Google Scholar 

  11. U. Johann, T.S. Luk, I. A. Mclntyre, A. McPherson, A.P. Schwarzenbach, K. Boyer, and C.K. Rhodes, Multiquantum processes at high field strengths, in: “Proceedings of the Topical Meeting on Short Wavelength Coherent Radiation,” J. Bokor and D. Attwood, eds., AIP, New York (to be published).

    Google Scholar 

  12. U. Johann, T.S. Luk, I.A. Mclntyre, A.P. Schwarzenbach, K. Boyer, and C.K. Rhodes, Subpicosecond studies of collision-free multiple ionization of atoms at 248 nm, Phys. Rev. Lett. (submitted).

    Google Scholar 

  13. M. Crance and M. Aymar, Dynamics of multiphoton ionisation to multiple continua, J. Phys. B 13:L421 (1980).

    Google Scholar 

  14. Y. Gontier and M. Trahin, Spatio-temporal effects in resonant multiphoton ionisation of the caesium atom, J. Phys. B 13:259 (1980).

    Google Scholar 

  15. P. Lambropoulos, Mechanisms for multiple ionization of atoms by strong pulsed lasers, Phys. Rev. Lett. 55:2141 (1985).

    Google Scholar 

  16. G. Wendin, L. Jönsson, and A. L’Huillier, Screening effects in multielectron ionization of heavy atoms in intense laser fields, Phys. Rev. Lett. 56:1241 (1986).

    Google Scholar 

  17. H. Egger, T.S. Luk, K. Boyer, D.F. Muller, H. Pummer, T. Srinivasan, and C.K. Rhodes, Picosecond, tunable ArF* excimer laser source, Appl. Phys. Lett. 41:1032 (1982).

    Google Scholar 

  18. U. Johann, T.S. Luk, I.A. Mclntyre, A. McPherson, A.P. Schwarzenbach, K. Boyer, and C.K. Rhodes, Multiphoton ionization in intense ultraviolet laser fields, in: “Proceedings of the Topical Meeting on Short Wavelength Coherent Radiation,” J. Bokor and D. Attwood, eds., AIP, New York (to be published).

    Google Scholar 

  19. A. McPherson, private communication.

    Google Scholar 

  20. T.A. Carlson, C.W. Nestor, Jr., N. Wasserman, and J.C. McDowell, Calculated ionization potentials for multiply charged ions, Atomic Data 2:63 (1970).

    Google Scholar 

  21. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov. Phys.-JETP 20:1307 (1965).

    MathSciNet  Google Scholar 

  22. Yu. P. Raizer, Breakdown and heating of gases under the influence of a laser beam, Sov. Phys.-USP 8:650 (1966).

    Google Scholar 

  23. L.I. Schiff, Measurability of electric dipole moments, Phys. Rev. 132:2194 (1963).

    MathSciNet  Google Scholar 

  24. P. Kruit, J. Kimman, H.G. Müller, and M.J. van der Wiel, Electron spectra from multiphoton ionisation of xenon at 1064, 532, and 355 nm, Phys. Rev. A 28:248 (1983).

    Google Scholar 

  25. S.-I. Chu and J. Cooper, Threshold shift and above-threshold multiphoton ionization of atomic hydrogen in intense laser fields, Phys. Rev. A 32:2769 (1985).

    Google Scholar 

  26. H.G. Muller, A. Tip, and M.J. van der Wiel, Ponderomotive force and AC stark shift in multiphoton ionisation, J. Phys. B 16:L679 (1983).

    Google Scholar 

  27. H.G. Müller and A. Tip, Multiphoton ionization in strong fields, Phys. Rev. A 30:3039 (1984).

    Google Scholar 

  28. M. Edwards, L. Pan, and L. Armstrong, Jr., Model study of multiphoton ionization in strong fields, J. Phys. B 17:L515 (1984).

    Google Scholar 

  29. Z. Bialynicka-Birula, Strong-field effects in electron spectra from multiphoton ionisation, J. Phys. B 17:2097 (1984).

    Google Scholar 

  30. M.H. Mittleman, Kinematics of multiphoton ionization in a steady laser beam, Phys. Rev. A 29:2245 (1984).

    Google Scholar 

  31. M.H. Mittleman, Intensity dependence of the ionisation potential of an atom in a resonant laser field, J. Phys. B 17:L351 (1984).

    Google Scholar 

  32. J. Bokor, P.H. Bucksbaum, and R.R. Freeman, Generation of 35.5-nm coherent radiation, Opt. lLett. 8:217 (1983).

    Google Scholar 

  33. K. Codling, R.P. Madden, and D.L. Ederer, Resonances in the photoionization continuum of Ne I (20-150 eV), Phys. Rev. 155:26 (1967).

    Google Scholar 

  34. U. Becker, R. Hölzel, H.G. Kerkhoff, B. Larger, D. Szostak, and R. Wehlitz, Near-threshold resonance enhancement of neon valence satellites studied with synchrotron radiation, Phys. Rev. Lett. 56:1120 (1986).

    Google Scholar 

  35. R.L. Carman, C.K. Rhodes, and R.F. Benjamin, Observation of harmonics in the visible and ultraviolet created in CO2-laser-produced plasmas, Phys. Rev. A 24:2649 (1981).

    Google Scholar 

  36. F. Herman and S. Skillman, “Atomic Structure Calculations,” Prentice-Hall, Inc., Englewood Cliffs (1963).

    Google Scholar 

  37. K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann, and H. Mark, Neutralatom electron binding energies from relaxed orbital relativistic Hartree-Fock calculations, Atomic Data and Nuclear Data Tables 18:243 (1976).

    Google Scholar 

  38. W.C. Martin, R. Zalubas, and L. Hagan, “Atomic Energy Levels-The Rare-Earth Elements,” NSRDS-NBS 60, USGPO, WDC (1978).

    Google Scholar 

  39. S. Goudsmit and L. Gropper, Many-electron selection rules, Phys. Rev. 38:225 (1931).

    Google Scholar 

  40. S. Pasternak, Transition probabilities of forbidden lines, Astrophys. J. 92:129 (1940).

    Google Scholar 

  41. D. Layzer and R.H. Garstang, Theoretical atomic transition probabilities, An. Rev. Astron. Astrophys. 6:449 (1968).

    Google Scholar 

  42. R.H. Garstang, Forbidden transitions, in: “Atomic and Molecular Processes,” D.R. Bates, ed., Academic Press, New York (1962).

    Google Scholar 

  43. M.J. van der Wiel and T.N. Chang, Intershell correlation in doubleelectron ejection from the outermost shell of Xe, J. Phys. B 11:L125 (1978).

    Google Scholar 

  44. M. Ya. Amusia, Collective effects in photoionization of atoms, in: “Advances in Atomic and Molecular Physics,” D.R. Bates and B. Bederson, eds., Academic Press, New York (1981), Vol. 17.

    Google Scholar 

  45. M. Ya. Amusia and N.A. Cherepkov, Many-electron correlations in scattering processes, in: “Case Studies in Atomic Physics 5,” E.W. McDaniel and M.R. McDowell, eds., North-Holland, Amsterdam (1975).

    Google Scholar 

  46. A. Zangwill and P. Soven, Density functional approach to local field effects in finite systems: Photoabsorption in the rare gases, Phys. Rev. A 21:156 (1980); ibid., Resonant photoemission in barium and cerium, Phys. Rev. Lett. 45:204 (1980)

    Google Scholar 

  47. W. Ekhardt and D.B. Tran Thoai, Collective excitations in atomic shells, Phys. Scr. 26:194 (1982)

    Google Scholar 

  48. A. Zangwill, Ph.D. thesis, University of Pennsylvania (1981).

    Google Scholar 

  49. T. Åberg, Theory of atomic decay following inner-shell ionization, in: “Photoionization and Other Probes of Many-Electron Interactions,” F.J. Wuilleumier, ed., Plenum, New York (1976).

    Google Scholar 

  50. G. Wendin, “Breakdown of the One-Electron Pictures in Photoelectron Spectra,” Vol. 45 of “Structure and Bonding,” Springer-Verlag, Berlin (1981)

    Google Scholar 

  51. S. Lundquist and G. Wendin, Theoretical aspects on high-energy excitations, J. Electron, Spectrosc. Relat. Phenom. 5:513 (1974).

    Google Scholar 

  52. G. Wendin, in: “Vacuum Ultraviolet Radiation Physics,” E.E. Koch, R. Haensel, and C. Kunz, eds., Pergamon, Braunschweig (1974).

    Google Scholar 

  53. G. Wendin, The random phase approximation with exchange, in: “Photoionization and Other Probes of Many-Electron Interactions,” F.J. Wuilleumier, ed., Plenum, New York (1976); H.P. Kelly and S.L. Carter, Many body perturbation calculations of the interaction of atoms with electromagnetic radiation, Phys. Scr. 21:448 (1980).

    Google Scholar 

  54. J.A.R. Samson and G.N. Haddad, Multiple photoionization of the rare gases, Phys. Rev. Lett. 33:875 (1974)

    Google Scholar 

  55. J.A.R. Samson, Future experimental problems in photoionization, in: “Photoionization and Other Probes of Many-Electron Interactions,” F.J. Wuilleumier, ed., Plenum, New York (1976).

    Google Scholar 

  56. J.P. Connerade, On double photoionisation, J. Phys. B. 10:L239 (1977).

    Google Scholar 

  57. M. Hollis, Multiphoton ionization and EM field gradient forces, Opt. Commun. 25:395 (1978).

    Google Scholar 

  58. P. Agostini, F. Fabré, G. Mainfray, G. Petite, and N.K. Rahman, Free-free transitions following six-photon ionization of xenon atoms, Phys. Rev. Lett. 42:1127 (1979).

    Google Scholar 

  59. B.W. Boreham and B. Luther-Davis, High energy electron acceleration by ponderomotive forces in tenuous plasmas, J. Appl. Phys. 50:2533 (1979).

    Google Scholar 

  60. P. Kruit, J. Kimman, and M.J. van der Wiel, Absorption of additional photons in the multiphoton ionisation continuum of xenon at 1064, 532, and 440 nm, J. Phys. B. 14:L597 (1981).

    Google Scholar 

  61. P. Kruit, J. Kimman, and M.J. van der Wiel, Electron spectra for multiphoton ionisation of xenon at 1064, 532, and 355 nm, Phys. Rev. A. 28:248 (1983).

    Google Scholar 

  62. K.G.H. Baldwin and B.W. Boreham, Investigation of tunneling processes in laser-induced ionization of argon, J. Appl. Phys. 52:2627 (1981).

    Google Scholar 

  63. L.A. Lompré, A. L’Huillier, G. Mainfray, and C. Manus, Laser-intensity effects in the energy distributions of electrons produced in multiphoton ionization of rare gases, J. Opt. Soc. Am. B 2:1906 (1985).

    Google Scholar 

  64. T.J. Mcllrath, M. Bashkansky, P. Bucksbaum, and R.R. Freeman, Suppression of multiphoton ionization with circularly polarized light, in: “Proceedings of the Topical Meeting on Short Wavelength Coherent Radiation,” J. Bokor and D. Attwook, eds., AIP, New York (to be published).

    Google Scholar 

  65. P. Venugopala Rao, Inner-shell transition measurements with radioactive atoms, in: “Atomic Inner-Shell Processes II,” B. Crasemann, ed., Academic Press, New York (1975).

    Google Scholar 

  66. W. Bambynek, K-shell flourescence yields, in: “Proceedings of the International Conference on Inner-Shell Ionization Phenomena and Future Applications,” Vol. 1, CONF-720404 (1973).

    Google Scholar 

  67. A. Moljk, K-shell fluorescence yields of low-Z elements determined from gaseous samples, in: “Proceedings of the International Conference on Inner-Shell Ionization Phenomena and Future Applications, Vol. 1, CONF-720404 (1973).

    Google Scholar 

  68. G.S. Ezra and R.S. Berry, Collective and independent particle motion in doubly excited two-electron atoms, Phys. Rev. A 28:1974 (1983).

    Google Scholar 

  69. G.S. Ezra and R.S. Berry, Quantum states of two particles on concentric spheres, Phys. Rev. A 28:1989 (1983).

    Google Scholar 

  70. U. Fano, Correlation of excited electrons: progress in the alkaline earth and other spectra, Phys. Scr. 24:656 (1981).

    Google Scholar 

  71. M.E. Kellman and D.R. Herrick, Ro-vibrational collective interpretations of supermultiplet classifications of intrashell levels of two-electron atoms, Phys. Rev. A 22:1536 (1980).

    Google Scholar 

  72. D.R. Herrick, New symmetry properties of atoms and molecules, Adv. Chem. Phys. 52:1 (1982).

    Google Scholar 

  73. I.C. Percival, Planetary atoms, Proc. Roy. Soc. London A353:289 (1977).

    Google Scholar 

  74. R.P. Madden and K. Codling, Two-electron excitation states in helium, Astrophys. J. 141:364 (1965).

    Google Scholar 

  75. U. Fano, Doubly excited states of atoms, in: “Atomic Physics,” B. Bederson, V.W. Cohen, and F.M.J. Pichanik, eds., Plenum, New York (1969).

    Google Scholar 

  76. The following volumes also contain considerable information on multiply excited atomic states: “Beam-Foil Spectroscopy,” S. Bashkin, ed., Springer-Verlag, Berlin (1976); “Beam-Foil Spectroscopy,” Vol. 1 & 2, I.A. Sellin and D.J. Pegg, eds., Plenum Press, New York (1976).

    Google Scholar 

  77. W. Heisenberg, Zur quantentheorie der multiplettstruktur und der anomalen zeemaneffekte, Z. Phys. 32:841 (1925).

    MATH  Google Scholar 

  78. E.U. Condon, The theory of complex spectra, Phys. Rev. 36:1121 (1930).

    MATH  Google Scholar 

  79. J. Berkowitz, J.L. Dehmer, Y.-K. Kim, and J.P. Desclaux, Valence shell excitation accompanying photoionization in mercury, J. Chem. Phys. 61:2556 (1974).

    Google Scholar 

  80. S. Süzer and D.A. Shirley, Initial-state configuration-interaction satellites in the photoemission spectrum of Cd, J. Chem. Phys. 61:2481 (1974)

    Google Scholar 

  81. S. Süzer, S.T. Lee, and D.A. Shirley, Correlation satellites in the atomic photoelectron spectra of group-IIA and-IIB elements, Phys. Rev. A 13:1842 (1976)

    Google Scholar 

  82. S.T. Lee, S. Süzer, E. Mathias, R.A. Rosenberg, and D.A. Shirley, Configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb, J. Chem. Phys. 66:2496 (1977).

    Google Scholar 

  83. S. Süzer, M.S. Banna, and D.A. Shirley, Relativistic and correlation effects in the 21.2-eV photoemission spectrum of atomic lead, J. Chem. Phys. 63:3473 (1975).

    Google Scholar 

  84. S. Süzer, S.T. Lee, and D.A. Shirley, PES of atomic and molecular bismuth, J. Chem. Phys. 65:412 (1976).

    Google Scholar 

  85. M.W.D. Mansfield and J.P. Connerade, On the simultaneous excitation of two electrons in neutral atomic zinc, Proc. Roy. Soc. London A359: 389 (1978)

    Google Scholar 

  86. M. W. D. Mansfield and G.H. Newsom, The Ca I absorption spectrum in the vacuum ultraviolet: excitation of the 3p-subshell, Proc. Roy. Soc. London A357:77 (1977)

    Google Scholar 

  87. M.W.D. Mansfield, The simultaneous excitation of two electrons in atomic cadmium, Proc. Roy. Soc. London A362:129 (1978)

    Google Scholar 

  88. J. Stöhr, R. Jaeger, and J.J. Rehr, Transition from adiabatic to sudden core-electron excitation: N2 on Ni(100), Phys. Rev. Lett. 51:821 (1983)

    Google Scholar 

  89. G.B. Armen, T. Åberg, K.R. Karim, J.C. Levin, B. Crasemann, G.S. Brown, M.H. Chen, and G.E. Ice, Threshold double photoexcitation of argon with synchrotron radiation, Phys. Rev. Lett. 54:182 (1985).

    Google Scholar 

  90. D.M. Holland and K. Codling, Double photoionisation in Ti and Pb in the region of the 5d transition, J. Phys. B 13:L745 (1980).

    Google Scholar 

  91. T.N. Chang and R.T. Poe, Double photoionization of neon, Phys. Rev. A 12:1432 (1975).

    Google Scholar 

  92. C. Stroller, W. Wölfli, G. Bonani, M. Stöckli, and M. Suter, Two-electron one-photon transitions into the doubly ionized K-shell, Phys. Rev. A. 15:990 (1977).

    Google Scholar 

  93. C.K. Rhodes and R.M. Hill, “Laser Excitation of Inner-Shell Atomic States by Multiquantum Amplitudes,” Molecular Physics Laboratory Memorandum MP 77–80a, SRI International (May, 1977).

    Google Scholar 

  94. P. Feldman and R. Novick, Auto-ionizing states in the alkali atoms with microsecond lifetimes, Phys. Rev. 160:143 (1967).

    Google Scholar 

  95. J. Sugar, T.B. Lucatorto, T.J. McIlrath, and A.W. Weiss, Even-parity autoionizing states in neutral sodium (350–400 Å), Opt. Lett. 4:109 (1979).

    Google Scholar 

  96. J.R. Willison, R.W. Falcone, J.C. Wang, J.F. Young, and S.E. Harris, Emission spectra of core excited even-parity 2p states of neutral lithium, Phys. Rev. Lett. 44:1125 (1980).

    Google Scholar 

  97. J.J. Wynne and J.P. Hermann, Spectroscopy of even-parity autoionizing levels in Ba, Opt. Lett. 4:106 (1979)

    Google Scholar 

  98. D.L. Ederer, T.B. Lucatorto, E.B. Saloman, R.P. Madden, M. Manalis, and J. Sugar, Photoabsorption of the 4d electrons in xenon and barium: a comparison, in: “Electron and Photon Interactions with Atoms,” H. Kleinpoppen and M.R.C. McDowell, eds., Plenum Press, New York (1976).

    Google Scholar 

  99. W.E. Cooke and T.F. Gallagher, Calculation of autoionization rates for high-angular-momentum Rydberg states, Phys. Rev. A 19:2151 (1979).

    Google Scholar 

  100. “Etats Atomiques et Moléculaires Couplés a un Continuum Atoms et Molécule Hautement Excites,” Colloques Internatoinaux de C.N.R.S. no. 273, Paris (1977).

    Google Scholar 

  101. D.M.P. Holland, K. Codling, J.B. West, and G.V. Marr, Multiple photoionisation. in the rare gases from threshold to 280 eV, J. Phys. B 12:2465 (1979).

    Google Scholar 

  102. D.P. Spears, H.J. Fischbeck, and T.A. Carlson, Satellite structure in the x-ray photoelectron spectra of rare gases and alkali-metal halides, Phys. Rev. A 9:1603 (1974).

    Google Scholar 

  103. R.P. Madden, D.L. Ederer, and K. Codling, Resonances in the photoionization continuum of Ar I (20–150 eV), Phys. Rev. 177:136 (1969).

    Google Scholar 

  104. K. Codling and R.P. Madden, Newly observed structure in the photoionization continua of Kr and Xe below 160 Å, Appl. Opt. 4:1431 (1965).

    Google Scholar 

  105. K. Codling and R.P. Madden, Resonances in the photoionization continua of Kr and Xe, Phys. Rev. A 4:2261 (1971).

    Google Scholar 

  106. K. Codling and R.P. Madden, The absorption spectra of krypton and xenon in the wavelength range 330–600 Å. J. Res. Nat. Bur. Stand. 76a:1 (1972).

    Google Scholar 

  107. J.D. Jackson, “Classical Electrodynamics,” Second Edition, John Wiley and Sons, New York (1975).

    MATH  Google Scholar 

  108. F. Bloch, Bremsvermögen von atomen mit mehreren elektronen, Z. Phys. 81:363 (1933)

    MATH  Google Scholar 

  109. E.T. Verkhovtseva, E.V. Gnatchenko, and P.S. Pogrebnjak, Investigation of the connection between ‘giant’ resonances and ‘atomic’ bremsstrahlung, J. Phys. B 16:L613 (1983).

    Google Scholar 

  110. M. Goldhaber and E. Teller, On nuclear dipole vibrations, Phys. Rev. 74:1046 (1948).

    Google Scholar 

  111. “Giant Multipole Resonances,” F.E. Bertrand, ed., Harwood Academic, London (1980)

    Google Scholar 

  112. F. Cannata and H. Überall, “Giant Resonance Phenomena in Intermediate-Energy Nuclear Reactions,” Springer-Verlag, Berlin (1980)

    Google Scholar 

  113. On the stability of the motion of Saturn’s rings, “The Scientific Papers of James Clerk Maxwell,” W.D. Niven, ed., Dover, New York (originally published in 1890). This reference was first indicated to the author by William E. Cooke.

    Google Scholar 

  114. R.M. Jopson, R.R. Freeman, W.E. Cooke, and J. Bokor, Electron shakeup in two-photon excitation of core electrons to Rydberg autoionizing states, Phys. Rev. Lett. 51:1640 (1983).

    Google Scholar 

  115. D. Chattarji, “The Theory of Auger Transitions,” Academic Press, New York (1976).

    Google Scholar 

  116. D. Pines, “Elementary Excitation in Solids,” W.A. Benjamin, Inc., New York, (1964).

    Google Scholar 

  117. T.S. Luk, H. Pummer, K. Boyer, M. Shahidi, H. Egger, and C.K. Rhodes, Anomalous collision-free multiple ionization of atoms with intense picosecond ultraviolet radiation, Phys. Rev. Lett. 51:110 (1983).

    Google Scholar 

  118. A. L’Huillier, L.-A. Lompré, G. Mainfray, and C. Manus, Multiply charged ions formed by multiphoton absorption processes in the continuum, Phys. Rev. Lett. 48:1814 (1982).

    Google Scholar 

  119. A. L’Huillier, L.-A. Lompré, G. Mainfray, and C. Manus, Multiply charged ions produced by multiphoton absorption in rare gas atoms, in: “Proceedings of the Conference on Laser Techniques in the Extreme Ultraviolet,” Vol. 119, S.E. Harris and T.B. Lucatorto, eds., AIP, New York (1984).

    Google Scholar 

  120. M.J. Feldman and R.Y. Chiao, Single-cycle electron acceleration in focused laser fields, Phys. Rev. A 4:352 (1971).

    Google Scholar 

  121. E.S. Sarachik and G.T. Schappert, Classical theory of the scattering of intense laser radiation by free electrons, Phys. Rev. D 1:2738 (1970).

    Google Scholar 

  122. T.P. Hughes, “Plasmas and Laser Light,” John Wiley and Sons, New York (1975).

    Google Scholar 

  123. P. Mora, Theoretical model of absorption of laser light by a plasma, Phys. Fluids 25:1051 (1982).

    MATH  Google Scholar 

  124. P.D. Gupta, R. Popil, R. Fedosejevs, A.A. Offenberger, D. Salzmann, and C.E. Capjack, Temperature and x-ray intensity scaling in KrF laser plasma interaction, Appl. Phys. Lett. 48:103 (1986).

    Google Scholar 

  125. P. Kaw and J. Dawson, Relativistie nonlinear propagation of laser beams in cold overdense plasmas, Phys. Fluids 13:472 (1970).

    Google Scholar 

  126. G.J. Pert, Inverse bremsstrahlung absorption in large radiation fields during binary collisions in the Born approximation, J. Phys. B 11:1105 (1978)

    Google Scholar 

  127. R.J. Dewhurst, G.J. Pert, and S.A. Ramsden, Laserinduced breakdown in the rare gases using picosecond Nd:glass laser pulses, J. Phys. B. 7:2281 (1974).

    Google Scholar 

  128. T.A. Carlson and M.O. Krause, Relative abundances and recoil energies of fragment ions formed from the x-ray photoionization of the N2, O2, CO, NO, CO2, and CF4, J. Chem. Phys. 56:3206 (1972).

    Google Scholar 

  129. W. Eberhardt, J. Stöhr, J. Feldhaus, E.W. Plummer, and F. Sette, Correlation between electron emission and fragmentation into ions following soft x-ray excitation of the N2 molecule, Phys. Rev. Lett. 51:2370 (1983).

    Google Scholar 

  130. J.W. Shearer, J. Garrison, J. Wong, and J.E. Swain, Pair production by relativistic electrons from an intense laser focus, Phys. Rev. A. 8:1582 (1973).

    Google Scholar 

  131. A.I. Akhiezer and V.B. Berestetskii, “Quantum Electrodynamics,” Wiley-Interscience, New York (1965).

    Google Scholar 

  132. D.R. Bach, D.E. Casperson, D.W. Forslund, S.J. Gitomer, P.D. Goldstone, A. Hauer, J.F. Kephart, J.M. Kindel, R. Kristal, G.H. Kyrda, K.B. Micheli, D.B. Hulsteyn, and A.A. Williams, Intensitydependent absorption in 10.6 μm laser-illuminated spheres, Phys. Rev. Lett. 50:2082 (1983)

    Google Scholar 

  133. A. Hauer et al., Super thermal electron generation, transport and deposition in CO2 laser irradiated targets, in: “Laser Interaction and Related Plasma Phenomena,” Vol. 6, H. Hora and G. Miley, eds., Plenum, New York (1984).

    Google Scholar 

  134. R.A. Granden, The status of laser fusion, in: “Strongly Coupled Plasmas,” G. Kaiman and P. Corini, eds., Plenum Press, New York (1978).

    Google Scholar 

  135. E.L. Chapp, “Gamma Ray Astronomy,” Reidel, Dordrecht (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rhodes, C.K. (1987). Ordered Many-Electron Motions in Atoms and X-Ray Lasers. In: Connerade, J.P., Esteva, J.M., Karnatak, R.C. (eds) Giant Resonances in Atoms, Molecules, and Solids. NATO ASI Series, vol 151. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2004-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2004-1_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2006-5

  • Online ISBN: 978-1-4899-2004-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics