Skip to main content

The Effects of 4f Level Occupancy, Coulomb Interactions, and Hybridization on Core Level Spectra of Lanthanides

  • Chapter
Giant Resonances in Atoms, Molecules, and Solids

Part of the book series: NATO ASI Series ((NSSB,volume 151))

  • 197 Accesses

Abstract

One of the necessary conditions for giant resonances is the presence of empty valence states with compact wave functions. This characteristic, found typically in transition metals, lanthanides, and actinides, is also associated with formation of narrow bands, strong Coulomb interactions between the narrow band electrons and weak hybridization between the narrow valence states and the rest of the valence bands in solids. It leads to complex behaviour in various core level and other spectroscopies; but it also leads to many puzzles in the physical and chemical properties of these elements, and also their alloys and compounds. These properties are related to the influence of both band structure and atomic correlation effects. The theoretical treatment of these properties is terribly difficult, so that provision of any experimental guidance on the size of the parameters involved and the appropriate approximations, assumes great importance. This has led many workers in the last decade to try to deduce ground state properties from complex, high energy spectroscopies, rather than to investigate the complex, high energy spectroscopies for themselves. The results have been surprisingly good and some of the background will be discussed here, using the lanthanide 4f levels as an example.

We will consider screening of a core hole in a solid and the satellites and dynamics of core hole creation and destruction. It will be shown how these effects can be related to problems in 4f level occupancy, Coulomb interactions between valence electrons, and hybridization of the 4f levels with conduction states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Cini, Density of two interacting holes in a solid, Sol. State Comm. 20: 605 (1976).

    Article  Google Scholar 

  2. G.A. Sawatzky, Quasiatomic Auger spectra in narrow-band metals, Phys. Rev. Lett. 39: 504 (1977).

    Article  Google Scholar 

  3. P.A. Cox, J.K. Lang and Y. Baer, J. Phys. F 11: 113 (1981)

    Article  Google Scholar 

  4. J.K. Lang, P.A. Cox and Y. Baer, Study of the 4f and valence band density of states in rare-earth metals: II. Experiment and results, J. Phys. F 11:121 (1981).

    Article  Google Scholar 

  5. J.C. Fuggle, M. Campagna, Z. Zolnierek, R. Lasser and A. Platau, Observation of a relationship between core-level lineshapes in photoelectron spectroscopy, Phys. Rev. Lett. 45: 1597 (1980).

    Article  Google Scholar 

  6. O. Gunnarsson and K. Schönhammer, Electron spectroscopies for Ce compounds in the impurity model, Phys. Rev. B 28: 4315 (1983).

    Article  Google Scholar 

  7. J.C. Fuggle, F.U. Hillebrecht, Z. Zolnierek, R. Lasser, Ch. Freiburg, O. Gunnarsson and K. Schönhammer, Electronic structure of Ce and its intermetallic compounds, Phys. Rev. B 27: 7330 (1983).

    Article  Google Scholar 

  8. O. Gunnarsson and K. Schönhammer, Double occupancy of the f orbital in the Anderson model for Ce compounds, Phys. Rev. B 31: 4815 (1985).

    Article  Google Scholar 

  9. N.F. Mott, The basis of the electron theory of metals, with special reference to the transition metals, Proc. Phys. Soc. London A 62:416 (1949).

    Article  Google Scholar 

  10. N.F. Mott, “Metal Insulator Transitions”, Taylor and Francis London (1974).

    Google Scholar 

  11. J.A. Wilson, Systematics of the breakdown of Mott insulation in binary transition metal compounds, Adv. in Phys. 21: 143 (1972).

    Article  Google Scholar 

  12. J.B. Goodenough, “Magnetism of the Chemical Bond” Interscience, New York (1963).

    Google Scholar 

  13. J. Hubbard, Electron correlation in narrow energy band. Parts I, II and III, Proc. Roy. Soc. London, 276:238 (1963); 277:237 (1964); 281:404 (1964).

    Article  Google Scholar 

  14. C. Herring, “Magnetism”, editors G.T. Rado and H. Suhl, Academic Press London (1966) Vol. IV.

    Google Scholar 

  15. P.W. Anderson, Localized magnetic states in metals, Phys. Rev. 124: 41 (1961).

    Article  MathSciNet  Google Scholar 

  16. F. Kondo, “Theory of dilute magnetic alloys”, in “Solid State Physics”, editors F. Seitz and D. Turnbull, Academic Press, New York 23:183 (1969).

    Google Scholar 

  17. L.L. Hirst, Theory of magnetic impurities in metals, Phys. Kondens. Mat. 11: 225 (1970).

    Google Scholar 

  18. See e. g. C.M. Varma, Mixed valence compounds, Rev. Mod. Phys. 48: 219 (1976).

    Article  Google Scholar 

  19. See. e. g. F.A. Cotton and G. Wilkinson, Adv. Inorg. Chem. J. Wiley, London (1962).

    Google Scholar 

  20. The term “hybridization” often has different meansing as used by physicists and chemists. Here it can usually be taken to mean mixing of orbitals on either the same or on different sites.

    Google Scholar 

  21. P.W. Bridgeman, Proc. Am. Acad. Arts Sci. 62:211 (1927).

    Google Scholar 

  22. W.H. Zachariasen, Quoted by A.W. Lawson and T.Y. Tang, Phys. Rev. 76: 301 (1949)

    Article  Google Scholar 

  23. L. Pauling, Quoted by A.F. Schuck and J.H. Sturdivant, J. Chem. Phys. 18:145 (1950).

    Google Scholar 

  24. B. Johansson, The α-γ transition in cerium is a Mott transition, Philos. Mag. 30: 469 (1974).

    Article  Google Scholar 

  25. U. Kornstad, R. Lasser and B. Lengeler, Investigation of the α-γ phase transition in cericum by Compton scattering, Phys. Rev. B 21: 1898 (1980)

    Article  Google Scholar 

  26. B. Lengeler, G. Materlik and J.E. Muller, L-edgeX-ray absorption of γ-and α-Cerium, Phys. Rev. B 28:2276 (1983).

    Article  Google Scholar 

  27. J.C. Fuggle, F.U. Hillebrecht, J.-M. Esteva, R.C. Karnatak, O. Gunnarsson and K. Schönhammer, f-count effects in x-ray absorption spectra of the 3d levels in Ce and its intermetallic compounds, Phys. Rev. B 27: 4637 (1983).

    Article  Google Scholar 

  28. G. Krill, J.P. Kappler, A. Meyer, L. Abadli and M.F. Ravet, Surface and bulk properties of cerium atoms in several cerium compouns: XPS and x-ray absorption measurements, J. Phys. F: Metal Phys. 11: 1713 (1981)

    Article  Google Scholar 

  29. D. Ravot, C. Godart, J.C. Achard and P. Lagarde, Rare earth valence evaluation by x-ray absoprtion spectroscopy in rare earth chalcogenides, “Valence Fluctuations in Solids”, editors L.M. Falicov, W. Hanke, M.B. Maple, North Holland Publishing Company (1981)423.

    Google Scholar 

  30. K.R. Bauchspiess, W. Boksch, E. Holland-Moritz, H. Launois, R. Pott and D. Wohlleben, LIII absorption edges of Ce-and Yb-intermediate valence compounds: non-existence of tetravalent cerium compouns, “Valence Fluctuations in Solids”, editors L.M. Falicov, W. Hanke, M.B. Maple, North Holland Publishing Company (1981) 417.

    Google Scholar 

  31. E. Wuilloud, H.R. Moser, W.-D. Schneider and Y. Baer, Electronic structure of γ-and α-Ce, Phys. Rev. B 28: 7354 (1983).

    Article  Google Scholar 

  32. J.W. Allen and R.M. Martin, Kondo volume collapse and the α→γ transition in cerium, Phys. Rev. Lett. 49: 1106 (1982).

    Article  Google Scholar 

  33. J.C. Fuggle, J.W. Allen, O. Gunnarsson, B. Lengeler, N. Mårtensson, S.-J. Oh, K. Schönhammer, G. v. d. Laan, J.-M. Esteva and R.C. Karnatak, Spectroscopic studies of the α-γCe transition, in preparation.

    Google Scholar 

  34. K. Andres, J.E. Graebner and H.R. Ott, 4f virtual bound state formation in CeAl3 at low temperatures, Phys. Rev. Lett. 35: 799 (1975)

    Article  Google Scholar 

  35. F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz and H. Schäfer, Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43:1892 (1979)

    Article  Google Scholar 

  36. G.R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56:755 (1984) and references therein

    Article  Google Scholar 

  37. Z. Fisk, H.R. Ott, T.M. Rice and J.L. Smith, Heavy-electron metals, Nature 320:124 (1986) and references therein.

    Article  Google Scholar 

  38. P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham and J.W. Wilkins, Theories of heavy electron systems, Comments Cond. Mat. Phys. 12: 99 (1986) and references therein.

    Google Scholar 

  39. L. Schlapbach, S. Hüfner and T. Riesterer, Core level spectroscopy of heavy-fermion Ce compounds, J. Phys. C: Solid State Phys. 19:L63 (1986).

    Article  Google Scholar 

  40. J.F. Herbst, Replicate core levels and 4f excitation energies in fluctuating valence materials, in “Valence Fluctuations in Solids”, editors L.M. Falicov, W. Hanke, M.B. Maple, North Holland Publishing Company (1981) 73.

    Google Scholar 

  41. See e. g. M. Campagna, G.K. Wertheim and Y. Baer, in “Photoemission in Solids II”, editors L. Ley and M. Cardona, Springer Berlin (1979).

    Google Scholar 

  42. F.U. Hillebrecht, J.C. Fuggle, G.A. Sawatzky, M. Campagna, O. Gunnarsson and K. Schönhammer, Transition to nonmagnetic f states in Ce intermetallic compounds studied by bremsstrahlung isochromat spectroscopy, Phys. Rev. B 30:1777 (1984).

    Article  Google Scholar 

  43. J.C. Fuggle, Spectroscopic studies of cerium compounds, Physica B 130: 56 (1985) and references therein. This paper was intended as a summary of a large fraction of the high energy spectroscopic estimates of 4f hybridization in Ce compounds.

    Article  Google Scholar 

  44. G. V. D. Laan, B.T. Thole, G.A. Sawatzky, J.C. Fuggle, R. Karnatak, J.-M. Esteva and B. Lengeier, Identification of the relative population of spin-orbit split states in the ground state of a solid, J. Phys. C: Solid State Phys. 19: 817 (1986).

    Article  Google Scholar 

  45. M. Ohno and G. Wendin, A many-body calculation of 3p XPS and Auger spectra for Zn, J. Phys. B 12: 1305 (1979).

    Article  Google Scholar 

  46. J. Sugar, Phys. Rev. A 6:1764 (1972); Potential barrier effects in photoabsorption. II. Interpretation of photoabsorption resonances at the 4d threshold, Phys. Rev. B 5: 1785 (1972)

    Article  Google Scholar 

  47. V.F. Demekhin, Fine structure of MIV v and NIV v absorption spectra of rare-earth elements, Sov. Phys. Solid State 16: 659 (1974).

    Google Scholar 

  48. B.T. Thole, G. V. D. Laan, J.C. Fuggle, G.A. Sawatzky, R.C. Karnatak and J.-M. Esteva, 3d X-ray-absorption lines and the 3d94fn+1 multiplets of the lanthanides, Phys. Rev. B 32: 5107 (1985).

    Article  Google Scholar 

  49. J.-M. Esteva, R.C. Karnatak, J.C. Fuggle and G.A. Sawatzky, Selection rules and multiplet effects in comparison of x-ray absorption and photoemission peak energies, Phys. Rev. Lett. 50: 910 (1983).

    Article  Google Scholar 

  50. F.P. Netzer, G. Strasser and J.A.D. Matthew, Selection rules in electron-excited 4f → 4f transitions at intermediate incident energies, Phys. Rev. Lett. 51: 211 (1983).

    Article  Google Scholar 

  51. J.A.D. Matthew, G. Strasser and F.P. Netzer, Multiplet effects and breakdown of dipole selection rules in the 3d → 4f core-electronenergy-loss spectra of La, Ce and Gd, Phys. Rev. B 27: 5839 (1983).

    Article  Google Scholar 

  52. Note that the precise definitions of the quantities we designate e, Uff and Uac vary from one publication to another. The values and signs we use are (hopefully) self-consistent and realistic enough to illustrate the principles of 4f electron behaviour in elements like Ce, but should not be thoughtlessly compared with values given in other works.

    Google Scholar 

  53. R. Manne and T. Åberg, Koopman’s theorem for inner shell ionization, Chem. Phys. Lett. 7: 282 (1970).

    Article  Google Scholar 

  54. A. Kotani and Y. Toyozawa, Optical spectra of core electron in metals with an incomplete shell. I. Analytic features, J. Phys. Soc. Japan 35: 1073 (1973)

    Article  Google Scholar 

  55. A. Kotani and Y. Toyozawa, Optical spectra of core electrons in metals with an incomplete shell. II. Numerical calculations of overall lineshapes, J. Phys. Soc. Japan 35:1082 (1973).

    Article  Google Scholar 

  56. K. Schönhammer and O. Gunnarsson, Shape of core level spectra in adsorbates, Solid State Comm. 28: 691 (1977); see also Solid State Comm. 26:147,399 (1978); and Z. Phys. B 30:297 (1978).

    Article  Google Scholar 

  57. A. Kotani, Japan. J. Phys. 46:488 (1979).

    Article  Google Scholar 

  58. S.J. Oh and S. Doniach, Screening effects in the core-level spectra of mixed-valence compounds, Phys. Rev. B 26: 2085 (1982).

    Article  Google Scholar 

  59. A. Fujimori, 4f and core-level photoemission satellites in cerium compounds, Phys. Rev. B 27: 3992 (1983); see also A. Fujimori, Phys. Rev. B 28:2881,4489 (1983).

    Article  Google Scholar 

  60. A. Fujimori and J.H. Weaver, 4f-5d hybridization and the α-γ phase transition in cerium, Phys. Rev. B 32: 3422 (1985).

    Article  Google Scholar 

  61. J.C. Fuggle, E. Umbach, D. Menzel, K. Wandelt and C.R. Brundle, Adsorbate lineshapes and multiple lines in XPS; comparison of theory and experiment, Solid State Comm. 27: 65 (1978).

    Article  Google Scholar 

  62. E. Umbach, On the interpretation of XPS lineshapes of weakly chemisorbed N2 on transition metals, Solid State Comm. 51: 365 (1984).

    Article  Google Scholar 

  63. G. Wendin, private communication.

    Google Scholar 

  64. W.-D. Schneider and C. Laubschat, Phys. Rev. Lett. 46:1023 (1981).

    Article  Google Scholar 

  65. A. Jayaraman, “Handbook of the Physics and Chemistry of the Rare Earths”, editors, K.A. Gschneidner and L.R. Eyring, North Holland Publishing Company Amsterdam (1979) p 730 in Vol. I and p. 578 in Vol. II.

    Google Scholar 

  66. O. Gunnarsson, this volume.

    Google Scholar 

  67. O. Gunnarsson, K. Schönhammer, J.C. Fuggle, F.U. Hillebrecht, J.-M. Esteva, R.C. Karnatak and B. Hillebrand, Occupancy and hybridization of the f level in Ce compounds, Phys. Rev. B 28: 7330 (1983).

    Article  Google Scholar 

  68. B.T. Thole, G. V. D. Laan and G.A. Sawatzky, Strong magnetic dichroism predicted in the M4,5 x-ray absorption spectra of magnetic rareearth materials, Phys. Rev. Lett. 55: 2086 (1985).

    Article  Google Scholar 

  69. G. V. D. Laan, B.T. Thole, G.A. Sawatzky, J.B. Goedkoop, J.C. Fuggle, J.-M. Esteva, R. Karnatak, J.P. Remeika and H.A. Dabkowska, Experimental proof of magnetic x-ray dichroism, Phys. Rev. B, submitted.

    Google Scholar 

  70. D.A. Shirley, “Photoemission in Solids I”, editors M. Cardona and L. Ley, Springer Verlag Berlin (1978) 166 ff, and references therein.

    Google Scholar 

  71. C.S. Fadley, “Electron Spectroscopy, Theory, Techniques and Applications, Volume 2”, editors C.R. Brundle and A.D. Baker, Academic Press London (1978) 98 ff and references therein.

    Google Scholar 

  72. S.P. Kowalczyk, L. Ley, R.A. Pollak, F.R. McFeely and D.A. Shirley, Phys. Rev. B 7: 4009 (1973).

    Article  Google Scholar 

  73. S.P. Kowalczyk, L. Ley, F.R. McFeely and D.A. Shirley, Phys. Rev. B 11: 1721 (1975).

    Article  Google Scholar 

  74. F.R. McFeely, S.P. Kowalczyk, L. Ley and D.A. Shirley, Phys. Lett. A 49: 301 (1974).

    Article  Google Scholar 

  75. J.C. Fuggle and S.F. Alvarado, Core-level lifetimes and determined by x-ray photoelectron spectroscopy measurements, Phys. Rev. A 22: 1615 (1980).

    Article  Google Scholar 

  76. J.-M. Esteva, R.C. Karnatak, J.C. Fuggle and G.A. Sawatzky, Selection rules and multiplet effects in comparison of x-ray absorption and photoemission peak energies, Phys. Rev. Lett. 50: 910 (1983).

    Article  Google Scholar 

  77. G.A. Sawatzky and J.C. Fuggle, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fuggle, J.C. (1987). The Effects of 4f Level Occupancy, Coulomb Interactions, and Hybridization on Core Level Spectra of Lanthanides. In: Connerade, J.P., Esteva, J.M., Karnatak, R.C. (eds) Giant Resonances in Atoms, Molecules, and Solids. NATO ASI Series, vol 151. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2004-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2004-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2006-5

  • Online ISBN: 978-1-4899-2004-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics