Skip to main content

Convective Heat Transfer to Low-Temperature Fluids

  • Chapter
Heat Transfer at Low Temperatures

Abstract

The purpose of this chapter is to review forced convection and natural convection processes in low-temperature (cryogenic) fluids. The emphasis will be on forced convection because more applications for that type of cooling are found. In most instances turbulent forced convection will be discussed. Low-temperature fluids can exist as gases, two-phase fluids, low-temperature liquids, or near-critical-state liquids. These fluid states are depicted in Fig. 3-1, which is a temperature—entropy diagram for any fluid. All of these regimes will be discussed in this presentation; however, region IV is given primary consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Hirschfelder, F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1954).

    Google Scholar 

  2. J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworth Scientific Publication (1959).

    Google Scholar 

  3. B. Widom, Science, 157 (3787), 375 (1967).

    Article  CAS  Google Scholar 

  4. O. Maass, Chem. Rev. 23 (1), 17 (1938).

    Article  CAS  Google Scholar 

  5. A. Michels, B. Blaisse, and C. Michels, Proc. Roy. Soc. (London), 160A (902), 358 (1937).

    Article  CAS  Google Scholar 

  6. R. D. Goodwin, D. E. Diller, H. M. Roder, and L. A. Weber, J. Res. NBS, A. Phys. and Chem., 67 (2), 173 (1963).

    Article  Google Scholar 

  7. E. F. Obert, Concepts of Thermodynamics, McGraw-Hill Book Co., New York (1960).

    Google Scholar 

  8. M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys., 8 (4), 334 (1940).

    Article  CAS  Google Scholar 

  9. T. R. Strobridge, NBS Tech. Note 129 (January 1962).

    Google Scholar 

  10. H. M. Roder and R. D. Goodwin, NBS Tech. Note 130 (December 1961).

    Google Scholar 

  11. B. Griffiths, J. Chem. Phys. 43 (6), 1958 (1965).

    Article  CAS  Google Scholar 

  12. B. Griffiths, Phys. Rev., 158 (1), 176 (1967).

    Article  Google Scholar 

  13. M. S. Green, M. Vicentini-Missoni, and J. M. H. Levelt Sengers, 18 (25), 1113 (1967).

    CAS  Google Scholar 

  14. J. M. H. Levelt Sengers and M. Vicentini-Missoni, Proceedings 4th Symposium Jn Thermophysical Properties, ASME (1968), 79.

    Google Scholar 

  15. M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S. Green, Phys. Rev. Lett., 22 (9), 389 (1969).

    Article  CAS  Google Scholar 

  16. J. V. Sengers, Ph.D. Dissertation, Univ. of Amsterdam, The Netherlands (1962).

    Google Scholar 

  17. A. Guildner, J. Res. NBS, A. Phys. and Chem., 66 (4) 341 (1962).

    Article  Google Scholar 

  18. D. E. Diller and H. M. Roder, Advances in Cryogenic Engineering, Vol. 15 Plenum Press, New York (1970), p. 58.

    Google Scholar 

  19. I. Stiel and G. Thodos, Progress in International Research on Thermodynamic and Transport Properties, ASME (1962), 352.

    Google Scholar 

  20. J. V. Sengers, Recent Advances in Engineering Science, Vol. 3 (A. C. Eringen, ed.), Gordon and Breach Science Publ. (1969), p. 153.

    Google Scholar 

  21. S. Brokaw, paper presented at International Conference on Properties of Steam, Tokyo, Japan, Sept. 9–13, 1968.

    Google Scholar 

  22. R. S. Thurston, Ph.D. Dissertation, Univ. of New Mexico, Albuquerque, New Mexico (1966).

    Google Scholar 

  23. R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and R. Friedman, NASA TN D-765 (May 1961).

    Google Scholar 

  24. E. Schmidt, E. R. G. Eckert, and U. Grigull, Trans. No. F-TS-527-RE, Air Material Command, Wright-Patterson AFB, Ohio (April 26, 1946 ).

    Google Scholar 

  25. B. Powell, Jet Propulsion, 27 (7), 776 (1957).

    Article  CAS  Google Scholar 

  26. R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and A. A. Medeiros, ARS J., 32 (2), 244 (1962).

    Article  CAS  Google Scholar 

  27. W. S. Miller, J. D. Seader, and D. M. Trebes, Bull. Inst. Intern. Froid, Annexe No. 2, 1965, 173.

    Google Scholar 

  28. M. E. Shitsman, High Temp., 1 (2), 237 (1963).

    Google Scholar 

  29. K. Yamagata, K. Nishikawa, S. Hasegawa, and T. Fugii, paper presented at Semi-International Symposium, Sept. 1967, Japan Society of Mechanical Engineers.

    Google Scholar 

  30. G. Domin, Brennstoff-Wärme-Kraft, 15 (11), 527 (1963).

    CAS  Google Scholar 

  31. L. B. Koppel and J. M. Smith, Intern. Developments in Heat Transfer, ASME 1963, 585.

    Google Scholar 

  32. B. S. Petukhov, E. A. Krasnoschekov, and V. S. Protopopov, Intern. Developments in Heat Transfer, ASME, 1963, 569.

    Google Scholar 

  33. H. S. Swenson, J. R. Carver, and C. R. Kakarala, Trans. ASME, J. Heat Transfer, 87 (4), 477 (1965).

    Article  CAS  Google Scholar 

  34. Y. Y. Hsu, Intern. Developments in Heat Transfer, ASME,1963 D-188.

    Google Scholar 

  35. E. G. Hauptmann, Ph.D. Dissertation, California Institute of Technology, Pasadena, California (1966).

    Google Scholar 

  36. M. A. Styrikovich, M. E. Shitsman, and Z. L. Miropolskii, Teploenergetika, 3, 32 (1956).

    Google Scholar 

  37. M. A. Styrikovich, Z. L. Miropolskii, and M. E. Shitsman, Mitt. Ver. Grosskesselbesitzer, 61, 288 (1959).

    Google Scholar 

  38. D. Wood, Ph.D. Dissertation, Northwestern Univ., Evanston, Illinois (1963).

    Google Scholar 

  39. A. Kahn, Ph.D. Dissertation, Univ. of Manchester, England (1965).

    Google Scholar 

  40. B. S. Shiralkar and P. Griffith, Paper 68-HT-39, ASME (August 1968).

    Google Scholar 

  41. J. R. McCarthy, D. M. Trebes, and J. D. Seader, Paper 67-HT-59, ASME (August 1967).

    Google Scholar 

  42. W. S. Hines, and H. Wolf, ARS J., 32(3), 361 (1962).

    Google Scholar 

  43. R. C. Hendricks, R. W. Graham, Y. Y. Hsu, and R. Friedman, NASA TN D-3095 (1966).

    Google Scholar 

  44. K. Goldmann, Rept. NDA-2–31, Nuclear Development Corp. of America (1956).

    Google Scholar 

  45. R. W. Graham, R. C. Hendricks, and R. C. Ehlers, NASA TN D-1883 (1964).

    Google Scholar 

  46. J. D. Griffith and R. H. Sabersky, ARS J., 30 (3), 289 (1960).

    Google Scholar 

  47. K. Knapp and R. H. Sabersky, Intern. J. Heat Mass Transfer, 9 (1), 41 (1966).

    Article  CAS  Google Scholar 

  48. K. Nishikawa and K. Miyabe, Mech. Fac. Eng. Kyusa Univ. 25 (1) 1 (1965).

    CAS  Google Scholar 

  49. M. Cumo, G. E. Farello, and G. Ferrari, paper presented at the 11th National Heat Transfer Conference, Minneapolis, Minnesota, August 3, 1969.

    Google Scholar 

  50. V. E. Holt and R. J. Grosh, Nucleonics, 21 (8), 122 (1963).

    Google Scholar 

  51. V. P. Skripov and P. I. Potashev, NASA TT F-11333 (1967).

    Google Scholar 

  52. R. J. Goldstein and W. Aung, paper 67-WA/HT-2, ASME (November 1967).

    Google Scholar 

  53. U. Grigull and E. Abadzic, presented at Symposium on Heat Transfer and Fluid Dynamics of Near Critical Fluids, Inst. Mech. Eng., Bristol, England (March 1968).

    Google Scholar 

  54. S. Hasegawa and K. Yoshioka, Proceedings of 3rd Intern. Heat Transfer Conference, Vol. 2, AIChE (1966), p. 214.

    Google Scholar 

  55. J. D. Parker and T. E. Mullin, presented at Symposium on Heat Transfer and Fluid Dynamics of Near Critical Fluids, Inst. Mech. Eng., Bristol, England (March 1968).

    Google Scholar 

  56. E. M. Sparrow and J. L. Gregg, Trans. ASME, 80 (4), 879 (1958).

    CAS  Google Scholar 

  57. J. R. Larson and R. J. Schoenhals, Trans. ASME J. Heat Transfer, 88 (4), 407 (1966).

    Article  CAS  Google Scholar 

  58. H. A. Simon and E. R. G. Eckert, Intern. J. Heat Mass Transfer, 6 (8), 681 (1963).

    Article  CAS  Google Scholar 

  59. J. P. Holman and J. H. Boggs, Trans. ASME, J. Heat Transfer, 82 (3), 221 (1960).

    Article  CAS  Google Scholar 

  60. G. E. Tanger, J. H. Lytle, and R. I. Vachon, Trans. ASME, J. Heat Transfer, 90 (1), 37 (1968).

    Article  CAS  Google Scholar 

  61. E. R. G. Eckert, Trans. ASME, 76 (1), 83 (1954).

    Google Scholar 

  62. R. P. Bringer and J. M. Smith, AIChE J., 3 (1), 49 (1957).

    Article  CAS  Google Scholar 

  63. N. M. Schnurr, Trans. ASME, J. Heat Transfer, 91 (1), 16 (1969).

    Article  CAS  Google Scholar 

  64. Z. L. Miropolskii, V. J. Picus, and M. E. Shitsman, in Proceedings of 3rd International Heat Transfer Conference, Vol. 2, AIChE (1966), p. 95.

    Google Scholar 

  65. N. L. Dickinson and C. P. Welch, Trans. ASME, 80 (3), 746 (1958).

    CAS  Google Scholar 

  66. D. Finn, Ph.D. Dissertation, Univ. of Oklahoma, Norman, Oklahoma (1964).

    Google Scholar 

  67. R. S. Brokaw, NACA RM E57K19a (1958).

    Google Scholar 

  68. H. L. Hess and H. R. Kunz, Trans. ASME, J. Heat Transfer, 87 (1) 41 (1965).

    Article  CAS  Google Scholar 

  69. R. W. Graham, NASA TN D-5522 (1969).

    Google Scholar 

  70. M. Wilson, Ph.D. Dissertation Univ. of New Mexico, Albuquerque, New Mexico (1969).

    Google Scholar 

  71. L. E. Gill, G. F. Hewitt, and P. M. C. Lacey, Rept. AERE-R-3955, United Kingdom Atomic Energy Authority (1963).

    Google Scholar 

  72. P. J. Bourke, D. J. Pulling, L. E. Gill, and W. H. Denton, paper presented at Symposium on Heat Transfer and Fluid Dynamics of Near Critical Fluids, Inst. Mech. Eng., Bristol, England (March 1968)

    Google Scholar 

  73. H. Ito, J. Basic Eng., 81 (2), 123 (1959).

    Google Scholar 

  74. W. R. Dean, (Ser. VII), 5 (30), 674 (1928).

    Google Scholar 

  75. R. C. Hendricks and F. F. Simon, in Multi-Phase Flow Symposium (N. J. Lipstein, ed. ), ASME (1963), p. 90.

    Google Scholar 

  76. Heat Transfer to Cryogenic Hydrogen Flowing Turbulently in Straight and Curved Tubes at High Heat Fluxes,“ NASA CR-678 (1967).

    Google Scholar 

  77. J. R. McCarthy, et al.,Rept. 6529, Rocketdyne Div., North American Aviation, NASA CR-78634 (September 15, 1966).

    Google Scholar 

  78. F. Taylor, J. Spacecraft Rockets, 5 (11), 1353 (1968).

    Article  Google Scholar 

  79. J. R. Bartlit and K. D. Williamson, Jr., Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 561.

    Book  Google Scholar 

  80. E. Michaud and C. P. Welch, short communication at the Seminar on Near Critical Fluids, 1968 Cryogenic Engineering Conference, Case Western Reserve Univ., Cleveland, Ohio.

    Google Scholar 

  81. Y. Y. Hsu and J. M. Smith, Trans. ASME, J. Heat Transfer, 83 (2), 176 (1961).

    Article  CAS  Google Scholar 

  82. S. S. Papell and D. D. Brown, paper presented at the 11th National Heat Transfer Conference, Minneapolis, Minnesota (August 3, 1969 ).

    Google Scholar 

  83. R. J. Simoneau and J. C. Williams, III, Intern. J. Heat Mass Transfer, 12, 120 (1969).

    Article  CAS  Google Scholar 

  84. E. M. Sparrow and J. L. Gregg, Trans. ASME, 80, 879 (1959).

    Google Scholar 

  85. C. A. Fritsch and R. J. Grosh, in Proceedings of 1961 International Heat Transfer Conference, ASME (August 1961), Vol. 5, paper 121.

    Google Scholar 

  86. C. A. Fritsch and R. J. Grosh, Trans. ASME, Heat Transfer, 85, 289 (1963).

    Article  Google Scholar 

  87. K. Brodowicz and J. Bealokoz, Archuvium Budowy Masyn X, 4 (1963).

    Google Scholar 

  88. S. Hasegawa and K. Yoshioka, in Proceedings of 1966 Intern. Heat Transfer Conference, ASME (August 1966 ), Vol. III, No. 2.

    Google Scholar 

  89. R. G. Deissler, Trans. ASME, 76 (1), 73 (1954).

    CAS  Google Scholar 

  90. R. G. Deissler, NACA Rept. 1210 (1955).

    Google Scholar 

  91. K. Goldmann, Chem. Eng. Progr. Symp. Ser., 50 (11), 105 (1954).

    CAS  Google Scholar 

  92. F. W. Dittus and L. M. K. Boelter, Univ. of California Publications in Engineering, Vol. 2, UCLA Press, Los Angeles, California (1930), p. 443.

    Google Scholar 

  93. E. R. Van Driest, Heat Transfer and Fluid Mechanics Institute, University of California, Los Angeles, (1955), paper XII.

    Google Scholar 

  94. R. G. Deissler, NASA TN D-2800 (1965).

    Google Scholar 

  95. F. Weiland, Jr., Chem. Eng. Progr. Symp. Ser., 61 (60), 97 (1965).

    CAS  Google Scholar 

  96. M. F. Taylor, NASA TN D-2280 (1964).

    Google Scholar 

  97. J. R. McCarthy and H. Wolf, Rept. RR 60–12 (NP-10572), Rocketdyne Division, North American Aviation (December 1960).

    Google Scholar 

  98. J. R. McCarthy and H. Wolf, ARS J., 30(4), 423 (1960).

    Google Scholar 

  99. M. F. Taylor, NASA TN D-4332 (1968).

    Google Scholar 

  100. M. F. Taylor, Intern. J. Heat Mass Transfer, 10 (8), 1123 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graham, R.W., Hendricks, R.C., Simoneau, R.J. (1975). Convective Heat Transfer to Low-Temperature Fluids. In: Frost, W. (eds) Heat Transfer at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1998-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1998-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2000-3

  • Online ISBN: 978-1-4899-1998-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics