Skip to main content

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

Abstract

As indicated earlier, the use of cryogenic fluids has introduced several unique problems in heat transfer. The handling and transporting of such fluids at low temperatures in the presence of an atmospheric ambient have required the innovation and development of specialized insulating methods and design techniques. As a result, new insulation systems, consisting of many thin layers of highly reflecting radiation shields separated by thin spacers or insulators, have been developed. These insulations, termed multilayer insulations or superinsulations, are very effective when subjected to a high vacuum (5 × 10–5 to 10–6 Torr) in reducing the heat leak into low-temperature systems. One type, which has as many as 50 layers of 0.00025-in.thick, aluminum-coated polyester radiation shields, has an apparent thermal conductivity at these pressures that is only 1/2000 that of ambient air.[1] In addition to new insulations for minimizing heat losses, special attention has been given to the thermal conduction effects associated with the design of supporting structures of cryogenic containers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Hinckley, “Advanced Studies on Multilayer Systems,” Final Rept., NASA CR-54929 (1966).

    Google Scholar 

  2. R. L. Powell and W. A. Blanpied, “Thermal Conductivity of Metals and Alloys at Low Temperatures,” NBS Circular 556 (September 1954) (now out of print, but available from depository libraries).

    Google Scholar 

  3. V. J. Johnson, ed., “A Compendium of the Properties of Materials at Low Temperatures (Phase 1), Part II.” Properties of Solids, WADD Tech. Rept. 60–56 (1960).

    Google Scholar 

  4. R. L. Powell, in American Institute of Physics Handbook, 2nd ed., McGraw-Hill Book Co., New York (1963), p. 4.

    Google Scholar 

  5. Y. S. Touloukian, ed., Thermophysical Properties Research Center Data Book,Vol. 1, Metallic Elements and Their Alloys,Purdue University, Lafayette, Ind. (1964), Chapt. 1.

    Google Scholar 

  6. R. W. Powell, C. Y. Ho, and P. E. Liley, “Thermal Conductivity of Selected Materials,” NSRDS-NBS 8 (November 25, 1966 ), Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  7. D. S. Dillard and K. D. Timmerhaus, “Thermal Transport Properties of Selected Solids at Low Temperatures,” Chem. Eng. Progr. Symp. Series, 64 (87), 1 (1968).

    CAS  Google Scholar 

  8. P. G. Klemens, in Thermal Conductivity, Vol. 1 ( R. P. Tye, ed.), Academic Press, New York (1969), p 1.

    Google Scholar 

  9. G. K. White, in Thermal Conductivity, Vol. 1 ( R. P. Tye, ed.), Academic Press, New York (1969), p. 69.

    Google Scholar 

  10. R. B. Scott, Cryogenic Engineering, D. Van Nostrand Company, Princeton, N.J. (1959).

    Google Scholar 

  11. R. F. Barron, Cryogenic Systems, McGraw-Hill Book Company, New York (1966).

    Google Scholar 

  12. K. D. Timmerhaus, ed., Advances in Cryogenic Engineering,Vols. 1–19, Plenum Press, New York (1960–1974).

    Google Scholar 

  13. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press, London (1959).

    Google Scholar 

  14. M. Jakob, Heat Transfer, Vol. 1, John Wiley and Sons, New York (1949).

    Google Scholar 

  15. P. J. Schneider, Conduction Heat Transfer, Addison-Wesley Publishing Co., Reading, Mass. (1955).

    Google Scholar 

  16. V. S. Arpaci, Conduction Heat Transfer, Addison-Wesley Publishing Co., Reading, Mass. (1966).

    Google Scholar 

  17. F. Kreith, Principles of Heat Transfer, International Textbook Co., Scranton, Pa. (1958).

    Google Scholar 

  18. W. M. Rohsenow and H. Y. Choi, Heat, Mass, and Momentum Transfer, Prentice-Hall, Englewood Cliffs, N.J. (1961).

    Google Scholar 

  19. M. Jakob and G. A. Hawkins, Elements of Heat Transfer, 3rd ed., John Wiley and Sons, New York (1957).

    Google Scholar 

  20. G. M. Dusinberre, Heat Transfer Calculations by Finite Differences, International Textbook Company, Scranton, Pa. (1961).

    Google Scholar 

  21. A. D. Moore, “Fields from Fluid Flow Mappers,” J. Appl. Phys., 20, 790 (1949).

    Article  Google Scholar 

  22. P. J. Schneider, “The Prandtl Membrane Analogy for Temperature Fields with Permanent Heat Sources or Sinks,” J. Aeronautical Sci., 19, 644 (1952).

    Google Scholar 

  23. Instructions for Analog Field Plotter,“ Catalogues 112L152G1 and G2, General Electric Company, Schenectady, New York.

    Google Scholar 

  24. J. A. Clark, in Cryogenic Technology ( R. W. Vance, ed.), John Wiley and Sons, New York (1963), p. 121.

    Google Scholar 

  25. R. K. McMordie, “Steady-State Conduction with Variable Thermal Conductivity,” Trans. ASME, J. Heat Transfer 84 (1), 92 (1962).

    Article  Google Scholar 

  26. M. N. Ozisik, Boundary Value Problems of Heat Conduction, International Textbook Co., Scranton, Pa. (1968).

    Google Scholar 

  27. D. S. Dillard and K. D. Timmerhaus, in Proceedings 8th Conference on Thermal Conductivity ( C. Y. Ho and R. E. Taylor, eds.), Plenum Press, New York (1969), p. 949.

    Google Scholar 

  28. J. G. Androulakis and R. L. Kosson, “Effective Thermal Conductivity Parallel to the Laminations and Total Conductance for Combined Parallel Heat Flow in Multilayer Insulation,” Paper No. AIAA 68–765, presented at AIAA 3rd Thermo-physics Conference, Los Angeles, Calif. (June 24–26, 1968 ).

    Google Scholar 

  29. J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, England (1957), p. 195.

    Google Scholar 

  30. W. A. Wooster, A Textbook on Crystal Physics, University Press, Cambridge, England (1938), p. 63.

    Google Scholar 

  31. S. R. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland Publishing Co., Amsterdam; Interscience Publishers, New York (1963), p. 235.

    Google Scholar 

  32. W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill Book Co., New York (1954), p. 33.

    Google Scholar 

  33. H. S. Carslaw, Mathematical Theory of Heat, Macmillan Book Co., New York (1921).

    Google Scholar 

  34. H. S. Carslaw, Fourier’s Series and Integrals, Macmillan Book Co., New York (1930).

    Google Scholar 

  35. L. R. Ingersoll, O. J. Zobel, and A. C. Ingersoll, Heat Conduction with Engineering and Geological Applications, McGraw-Hill Book Co., New York (1948).

    Google Scholar 

  36. A. B. Newman, Trans. AIChE, 24, 44 (1930).

    Google Scholar 

  37. H. P. Gurney and J. Lurie, Ind. Eng. Chem., 15, 1170 (1923).

    Article  CAS  Google Scholar 

  38. M. Fishenden and O. A. Saunders, An Introduction to Heat Transfer, Clarendon Press, Oxford, England (1950).

    Google Scholar 

  39. M. P. Heisler, “Temperature Charts for Induction and Constant Temperature Heating,” Trans. ASME, 69, 227 (1947).

    Google Scholar 

  40. H. Gröber, S. Erk, and V. Grigull, Fundamentals of Heat Transfer, 3rd ed., McGraw-Hill Book Co., New York (1961).

    Google Scholar 

  41. L. M. K. Boelter, V. H. Cherry, and H. A. Johnson, Heat Transfer, 3rd ed., University of California Press, Berkeley, Calif. (1942).

    Google Scholar 

  42. C. M. Fowler, “Analysis of Numerical Solutions of Transient Heat Flow Problems,” Quart. Appl. Math., 3 (4), 361 (1945).

    Google Scholar 

  43. J. A. Clark, in Advances in Heat Transfer, Vol. 5 ( T. F. Irvine, Jr., and J. P. Hartnett, ed.), Academic Press, New York (1968), p. 325.

    Google Scholar 

  44. P. J. Schneider, Temperature Response Charts, John Wiley and Sons, New York (1963).

    Google Scholar 

  45. H. Z. Barakat and J. A. Clark, “On the Solutions of the Diffusion Equation by Numerical Methods,” Trans. ASME, J. Heat Transfer 88, 421 (1966).

    Article  CAS  Google Scholar 

  46. P. E. Glaser, I. A. Black, R. S. Lindstrom, R. E. Ruccia, and A. E. Wechsler, “Thermal Insulation Systems,” NASA SP-5027 (1967).

    Google Scholar 

  47. E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill Book Co., New York (1938).

    Google Scholar 

  48. R. J. Corruccini, “Gaseous Heat Conduction at Low Pressures and Temperatures,” Vacuum, 7 (8), 19 (1957–1958).

    Google Scholar 

  49. R. J. Corruccini, “Properties of Materials at Low Temperatures,” Chem. Eng. Progr., 53 (8), 397 (1957).

    CAS  Google Scholar 

  50. D. 1.-J. Wang, “Multiple-layer Insulations,” paper presented at 1961 Conference on Aerodynamically Heated Structures, Air Force Office of Scientific Research.

    Google Scholar 

  51. I. A. Black and P. E. Glaser, in Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 26.

    Google Scholar 

  52. R. P. Caren and G. R. Cunningham, “Heat Transfer in Multi-layer Insulation Systems,” Chem. Eng. Progr. Symp. Series, 64 (87), 67 (1968).

    CAS  Google Scholar 

  53. J. A. Paivanos, O. P. Roberts, and D. I.-J. Wang, in Advances in Cryogenic Engineering, Vol. 10, Plenum Press, New York (1965), p. 197.

    Chapter  Google Scholar 

  54. M. M. Fulk, in Progress in Cryogenics, Vol. 1 ( K. Mendelssohn, ed.), Academic Press, New York (1959), p. 63.

    Google Scholar 

  55. R. F. Barron, Cryogenic Systems, McGraw-Hill Book Co., New York (1966).

    Google Scholar 

  56. D. Cline and R. H. Kropschot, in Radiative Transfer from Solid Materials, ( H. H. Blair, ed.), Macmillan Book Co., New York (1962), p. 61.

    Google Scholar 

  57. R. H. Kropschot, in Cryogenic Technology ( R. W. Vance, ed.), John Wiley and Sons, New York (1963), p. 239.

    Google Scholar 

  58. R. H. Kropschot and R. W. Burgess, in Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 425.

    Google Scholar 

  59. B. J. Hunter, R. H. Kropschot, J. E. Schrodt, and M. M. Fulk, in Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York (1960), p. 146.

    Google Scholar 

  60. R. H. Kropschot, in Applied Cryogenic Engineering ( R. W. Vance and W. M. Duke, eds.), John Wiley and Sons, New York (1962), p. 152.

    Google Scholar 

  61. R. W. Arnett, K. A. Warren, and L. O. Mullen, “Optimum Design of Liquid Oxygen Containers,” WADC Tech. Rept. 59–62 (1961).

    Google Scholar 

  62. M. McClintock, Cryogenics, Reinhold Publishing Corporation, New York (1964).

    Google Scholar 

  63. P. D. Fuller and J. N. McLagan, in Applied Cryogenic Engineering ( R. W. Vance and W. M. Duke, eds.), John Wiley and Sons, New York (1962), p. 215.

    Google Scholar 

  64. J. M. Lock, “Optimization of Current Leads Into a Cryostat,” Cryogenics, 9 (6), 438 (1969).

    Google Scholar 

  65. R. B. Jacobs, in Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 529.

    Google Scholar 

  66. WADC Technical Report 59–386 (1959).

    Google Scholar 

  67. S. Stoy, in Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York (1960), p. 216.

    Google Scholar 

  68. F. Kreith, J. W. Dean, and L. Brooks, in Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 536.

    Google Scholar 

  69. D. H. Liebenberg, R. W. Stokes, and F. J. Edeskuty, in Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 554.

    Chapter  Google Scholar 

  70. R. H. Kropschot, B. L. Knight, and K. D. Timmerhaus, in Advances in Cryogenic Engineering, Vol. 14, Plenum Press, New York (1969), p. 224.

    Google Scholar 

  71. B. L. Knight, K. D. Timmerhaus, and R. H. Kropschot, “Modeling Transient Behavior in Cryogenic Storage Vessels,” presented at 3rd Joint AIChE-IMIQ Meeting, Denver, Colorado, August 31—September 2, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timmerhaus, K.D. (1975). Conductive Heat Transfer. In: Frost, W. (eds) Heat Transfer at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1998-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1998-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2000-3

  • Online ISBN: 978-1-4899-1998-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics