Skip to main content

Pressure Drop and Compressible Flow of Cryogenic Liquid-Vapor Mixtures

  • Chapter
Heat Transfer at Low Temperatures

Abstract

This chapter reviews the one-dimensional methods available to predict the fluid dynamics of two-phase systems. Most of the methods are derived from air—water or steam—water studies. However, as will be shown, these models also appear to characterize cryogenic two-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Lockhart and R. C. Martinelli, Chem. Eng. Prog. 45, 39 (1949).

    Google Scholar 

  2. R. C. Martinelli and D. B. Nelson, Trans. ASME 70, 695 (1948).

    Google Scholar 

  3. M. R. Hatch and R. B. Jacobs, AIChE J. 8, 18 (1962).

    Article  CAS  Google Scholar 

  4. R. J. Richards, W. G. Stewart, and R. B. Jacobs, in Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York (1960), p. 103.

    Google Scholar 

  5. P. S. Shen and Y. W. Jao, in Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New York (1969), p. 378.

    Google Scholar 

  6. A. de La Harpe, S. Lehongre, J. Mollard, and C. Johannes, in Advances in Cryogenic Engineering, Vol. 14, Plenum Press, New York (1969), p. 170.

    Google Scholar 

  7. R. P. Sugden and K. D. Timmerhaus, in Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York, (1969), p. 420.

    Google Scholar 

  8. A. Lapin and E. Bauer, in Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 409.

    Google Scholar 

  9. S. Levy, Trans. ASME, J. Heat Transfer 82 (5), 113 (1960).

    Article  CAS  Google Scholar 

  10. S. G. Bankoff, Trans. ASME, J. Heat Transfer 82 (4), 265 (1960).

    Article  CAS  Google Scholar 

  11. A. A. Armand, Izv. Vses. Teplotekhn. Inst. 1, 16 1946; also UKAEA, AERE Trans. 828 (1959).

    Google Scholar 

  12. G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill Book Co., New York (1969), p. 51.

    Google Scholar 

  13. G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill Book Co., New York (1969), p. 325.

    Google Scholar 

  14. H. K. Fauske, in Proc. Heat Transfer and Fluid Mechanics Institute, Stanford, California, Stanford Univ. Press (1961).

    Google Scholar 

  15. R. W. Graham, R. C. Hendricks, Y. Y. Hsu, and R. Friedman, in Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York (1961), p. 517.

    Google Scholar 

  16. H. K. Fauske and M. A. Grolmes, “Modeling of Liquid Vapor Metal Flows with Non-Metallic Fluids,” ASME Paper 70-HT-21 (1970).

    Google Scholar 

  17. P. A. Lottes and W. S. Flinn, Nucl. Sci. Eng., 1, 461 (1956).

    CAS  Google Scholar 

  18. B. L. Richardson, ANL 5949 (1958).

    Google Scholar 

  19. S. C. Rose, Jr. and P. Griffith, ASME Paper 65-HT-58 (1965).

    Google Scholar 

  20. M. R. Hatch, R. B. Jacobs, R. J. Richards, R. N. Boggs, and G. R. Phelps, in Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York (1958), p. 357.

    Google Scholar 

  21. R. C. Williamson and C. E. Chase, Phys. Rev. 176 (1), 285 (1968).

    Article  CAS  Google Scholar 

  22. W. van Dael, A. van Iterbeek, and J. Thoen, in Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1966), p. 754.

    Google Scholar 

  23. R. E. Henry, M. A. Grolmes, and H. K. Fauske, in Cocurrent Gas-Liquid Flow (Rhodes and Scott, eds.), Plenum Press, New York (1969), p. 1.

    Google Scholar 

  24. H. K. Fauske, in Proc. Symposium on Two Phase Dynamics, Eindhoven, Netherlands (1967).

    Google Scholar 

  25. R. E. Henry, Chem. Eng. Progr. Symp. Series, Heat Transfer 66, 1 (1970).

    CAS  Google Scholar 

  26. L. J. Hamilton, Ph.D. Dissertation, Nuclear Engineering Dept., Univ. of California (1968).

    Google Scholar 

  27. H. B. Karplus, ARF 4132–12 (1961).

    Google Scholar 

  28. N. I. Semenov and S. I. Kosterin, Teploenergetica 11 (6), 46 (1964).

    Google Scholar 

  29. M. A. Grolmes and H. K. Fauske, Nucl. Eng. Design 11, 137 (1969).

    Article  CAS  Google Scholar 

  30. R. E. Henry, Chem. Eng. Progr. Symp. Series, Convective and Interfacial Heat Transfer 67, 38 (1971).

    CAS  Google Scholar 

  31. W. G. England, J. C. Firey, and O. E. Trapp, I and EC Process Design and Dev. 5, 198 (1966).

    Article  CAS  Google Scholar 

  32. H. K. Fauske and T. C. Min, ANL-6667, Argonne National Laboratory (1963).

    Google Scholar 

  33. P. F. Pasqua, Refrigerating Eng. 61, 1084A (1953).

    Google Scholar 

  34. J. C. Hesson and R. E. Peck, AIChE J. 4, 207 (1958).

    Article  CAS  Google Scholar 

  35. R. E. Henry and H. K. Fauske, Trans. ASME, J. Heat Transfer 93 (2), 179 (1971).

    Article  CAS  Google Scholar 

  36. R. E. Henry, ANL-7430, Argonne National Laboratory (1968).

    Google Scholar 

  37. R. V. Smith, L. B. Cousins, and G. F. Hewitt, AERE-R5736, Atomic Energy Research Establishment, Harwell (1968).

    Google Scholar 

  38. R. F. Tangren, C. H. Dodge, and H. S. Seifert, J. Appl. Phys. 20, 736 (1949).

    Article  Google Scholar 

  39. J. A. Vogrin, ANL-6754, Argonne National Laboratory (1963).

    Google Scholar 

  40. E. S. Starkman, V. E. Schrock, V. E. Neusen, and D. J. Maneely, Trans. ASME, J. Basic Eng. 86-D, 247 (1964).

    Google Scholar 

  41. J. C. Hesson, Ph.D. Dissertation, Illinois Institute of Technology (1957).

    Google Scholar 

  42. J. A. Perry, Jr., Trans. ASME, 71, 757 (1949).

    CAS  Google Scholar 

  43. B. T. Amberg, J. Basic Eng. 84, 447 (1962).

    Article  Google Scholar 

  44. H. M. Campbell and T. J. Overcamp, NASA TMX-53492 (1966).

    Google Scholar 

  45. F. W. Bonnet, in Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1966), p. 427.

    Google Scholar 

  46. H. K. Fauske, ANL-6633, Argonne National Laboratory (1962).

    Google Scholar 

  47. S. Levy, Trans. ASME, J. Heat Transfer 87-C, 53 (1965).

    Google Scholar 

  48. F. J. Moody, Trans. ASME, J. Heat Transfer 87-C, 134 (1965).

    Google Scholar 

  49. R. J. Simoneau, R. E. Henry, R. C. Hendricks, and R. Watterson, NASA TMX-67863, Lewis Research Center (1971).

    Google Scholar 

  50. R. J. Richards, R. B. Jacobs, and W. J. Pestalozzi, in Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York (1958), p. 272.

    Google Scholar 

  51. J. A. Brennan, in Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1963), p. 292.

    Google Scholar 

  52. A. K. Edwards, AHSD(S) R147, United Kingdom Atomic Energy Authority (1968).

    Google Scholar 

  53. H. Uchida and H. Nariai, in Proc. of the Third International Heat Transfer Conference, AIChE (1966,), Vol. 5, p. 1.

    Google Scholar 

  54. P. F. Paqua, Ph.D. Dissertation, Dept. of Mech. Eng., Northwestern Univ. (1952).

    Google Scholar 

  55. R. E. Henry, Nucl. Sci. Eng. 41, 336 (1970).

    CAS  Google Scholar 

  56. R. E. Henry, to be published as an Argonne National Laboratory Report.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henry, R.E., Grolmes, M.A., Fauske, H.K. (1975). Pressure Drop and Compressible Flow of Cryogenic Liquid-Vapor Mixtures. In: Frost, W. (eds) Heat Transfer at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1998-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1998-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2000-3

  • Online ISBN: 978-1-4899-1998-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics