Skip to main content

GaAs FET Amplifiers and Microwave Monolithic Integrated Circuits

  • Chapter
  • 415 Accesses

Part of the book series: Microdevices ((MDPF))

Abstract

One of the most important applications of GaAs FETs is in small signal amplifier components. High-frequency low-noise GaAs FETs are used in phase-array radars, signal processors, space based electronic detection systems, tracking devices, and digital transmitter-receivers. In particular, GaAs low-noise amplifiers are used in communication equipment for the 3.7–4.2-GHz television receive-only (TVRO) band and for the 12-GHz direct broadcast satellite (DBS) band. The DBS receivers represent a large potential market for GaAs components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Cuevas, A microprocessor mediates the noise figure debate, Microwaves December, 51 (1981).

    Google Scholar 

  2. A. van der Ziel, Thermal noise in field effect transistor, Proc. IRE 50, 1808–1812 (1962).

    Article  Google Scholar 

  3. A. van der Ziel, Gate noise in field effect transistors at moderately high frequencies, Proc. IRE 51, 462–467 (1963).

    Google Scholar 

  4. C. A. Liehti, Microwave field-effect transistors, IEEE Trans. Microwave Theory Technique MTT-24, 279–300 (1976).

    Article  Google Scholar 

  5. R. A. Pucel, H. A. Haus, and H. Statz, Signal and noise properties of gallium arsenide microwave field-effect transistors, in Advances in Electronics and Electron Physics, Vol. 38, Academic, New York, 1975, pp. 195–265.

    Google Scholar 

  6. H. Fukui, Optimum noise figure of microwave GaAs MESFETs, IEEE Trans. Electron Devices ED-26, 1032–1037 (1979).

    Article  Google Scholar 

  7. H. Fukui, Determination of the basic device parameters of a GaAs MESFET, Bell Syst. Tech. J. 58, 771–797 (1979).

    Google Scholar 

  8. A. Podeli, A Functional GaAs FET noise model, IEEE Trans. Electron Devices ED-28(5), 511–517 (1981).

    Article  Google Scholar 

  9. R. W. H. Engelmann and C. A. Liechti, Gunn domain formaton in the saturated region of GaAs MESFETs, IEDM Tech. Digest Dec. 351–354 (1976).

    Google Scholar 

  10. R. W. H. Engelmann and C. A. Liechti, Bias dependence of GaAs and InP MESFET parameters, IEEE Trans. Electron Devices ED-24(11), 1288–1296 (1977).

    Article  Google Scholar 

  11. M. S. Shur and L. F. Eastman, Current-voltage characteristics, small-signal parameters and switching times of GaAs FETs, IEEE Trans. Electron Devices ED-25(6), 606–611 (1978).

    Article  Google Scholar 

  12. R. E. Neidert and C. J. Scott, Computer program for microwave GaAs MESFET modeling, NRL Report 8561, Naval Research Laboratory, February 12, 1982.

    Google Scholar 

  13. M. Reiser, Two-dimensional analysis of substrate effects in junction FETs, Electron. Lett. 6, 493–494 (1970).

    Article  Google Scholar 

  14. L. F. Eastman and M. S. Shur, Substrate current in GaAs MESFETs, IEEE Trans. Electron Devices ED-26, 1359–1361 (1979).

    Article  Google Scholar 

  15. R. A. Kiehl and G. C Osborn, Physics of short gate GaAs MESFETs from hydrostatic pressure studies. , IEEE Trans Electron Devices ED-28(8), (1981).

    Google Scholar 

  16. W. C Bruncke and A. Van. der Ziel, Thermal noise in junction gate field effect transistor, IEEE Trans. Electron Devices ED-13, 323–329 (1966).

    Article  Google Scholar 

  17. J. A. Turner, R. S. Butlin, D. Parker, R. Bennet, A. Peake, and A. Hughes, The noise and gain performance of submicron gate length GaAs FETs, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Arctech House, Dedham, Massachusetts, 1982, pp. 151–174.

    Google Scholar 

  18. F. Hasegawa, Low Noise GaAs FETs, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Arctech House, Dedham, Massachusetts, 1982, pp. 177–193.

    Google Scholar 

  19. NEC application notes, published by California Eastern Labs., Inc., exclusive sales agent for NEC Corporation, Santa Clara, California (1983).

    Google Scholar 

  20. K. Kamei, H. Kawasaki, T. Chigua, T. Nakanier, T. Kawabuchi, and M. Yoshimi, Extremely low-noise MESFETs fabricated by metelorganic chemical vapor deposition, Electron. Lett. 17, 450–451 (1981).

    Article  Google Scholar 

  21. C. H. Oxley, A. H. Peake, R. H. Bennet, J. Arnold, and R. S. Butlin, Q-band (26–40 GHz) GaAs FETs, IEDM Tech. Digest Dec, 680–683 (1981).

    Google Scholar 

  22. P. W. Chye and C. Huang, Quarter micron low noise GaAs FET’s, IEEE Electron Device Lett. EDL-3EDL-3(12), 401–403 (1982).

    Article  Google Scholar 

  23. W. R. Frensley, Power limiting breakdown effects in GaAs MESFETs, IEEE Trans. Electron Devices ED-28(8), 962–970 (1981).

    Article  Google Scholar 

  24. S. H. Wemple, W. C Niehaus, H. M. Cox, J. V. DiLorenzo, and W. O. Schlosser, Control of gate-drain avalanche in GaAs MESFETs, IEEE Trans. Electron Devices ED-27, 1013–1018 (1980).

    Article  Google Scholar 

  25. W. C Niehaus, S. H. Wemple, L. A. D’Asaro, H. Fukui, J. C. Irvin, H. M. Cox, J. V. DiLorenzo, J. C. M. Hwang, and W. O. Schlosser, GaAs power FET design, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandeiwal, Arctech House, Dedham, Massachusetts, 1982, pp. 279–306.

    Google Scholar 

  26. F. Hasegawa, Power GaAs FETs, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Arctech House, Dedham, Massachusetts, 1982, pp. 219–255.

    Google Scholar 

  27. L. F. Eastman, S. Tiwari, and M. S. Shur, Design criteria for GaAs MESFETs related to stationary high field domains, Solid State Electron. 23, 383–389 (1980).

    Article  Google Scholar 

  28. M. S. Shur, L. F. Eastman, S. Judraprawira, J. Gammel, and S. Tiwari, Design Criteria for GaAs MESFETs related to stationary high field domains, IEDM Tech. Digest Dec, 381–383 (1978).

    Google Scholar 

  29. H. Macksey, R. L. Adams, D. N. McQuiddy, and W. R. Wisseman, X-band performance of GaAs power FETs, Electron. Lett. 12(2), (1976).

    Google Scholar 

  30. I. Drukier, Power GaAs FETs, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Arctech House, Dedham, Massachusetts, 1982, pp. 202–217.

    Google Scholar 

  31. I. Drukier et al, Electron. Lett. 11, 104 (1975).

    Article  Google Scholar 

  32. Y. Mitsui et al., Europian Microwave Conference Technical Digest, p. 272, 1979.

    Google Scholar 

  33. L. A. D’Asaro, J. V. DiLorenzo, and H. Fukui, IEDM Tech. Digest, 370 (1977).

    Google Scholar 

  34. B. S. Hewitt et al., European Microwave Conference Technical Digest, p. 265, 1979.

    Google Scholar 

  35. S. H. Wemple and H. C Huang, Thermal Design of Power GaAs FETs, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Arctech House, Dedham, Masachusetts 1982, pp. 309–347.

    Google Scholar 

  36. S. Tiwari, L. F. Eastman, and L. Rathburn, Physical and material limitations on burnout voltage of GaAs power MESFETs, IEEE Trans. Electron Devices ED-27, 1045 (1980).

    Article  Google Scholar 

  37. T. Furutsuka, T. Tsuji, and F. Hasegawa, IEEE Trans. Microwave Theory Technique MTT-24, 512 (1978).

    Google Scholar 

  38. P. Ladbrooke and A. L. Martin, Material and structure factors affecting the large signal operation of GaAs MESFETs, International Conference on Semi-insulating GaAs, p. 313, France.

    Google Scholar 

  39. K. Morizane, M. Dosen, and Y. Mori, A mechanism of source-drain burnout in GaAs MESFETs, Inst. Phys. Conf. Ser. 45, 287 (1979).

    Google Scholar 

  40. R. C. Clarke, A high-efficiency castellated gate power FET, in Proceedings of IEEEJCornell Conference on High-Speed Semiconductor Devices and Circuits, IEEE Cat. No. 83chl959–6, pp. 93–111, Ithaca, New York, 1983.

    Google Scholar 

  41. H. M. Macksey and F. H. Doerbeck, GaAs FETs having high output power per unit gate width, IEEE Electron Device Lett. EDL-2(6), 147–148 (1981).

    Article  Google Scholar 

  42. H. M. Macksey, R. L. Adams, D. N. McQuiddy, D. W. Shaw, and W. R. Wisseman, Dependence of GaAs power MESFET microwave performance on device and material parameters, IEEE Trans. Electron Devices ED-24(2), 113–122 (1977).

    Article  Google Scholar 

  43. H. M. Macksey, GaAs power FET design, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Arctech House, Dedham, Massachusetts, 1982, pp. 257–275.

    Google Scholar 

  44. P. Saunier and H. D. Shih, State-of-the-art K-band GaAs power field effect transistors prepared by molecular beam epitaxy, IEEE Trans. Elecron Devices ED-30(11), 1599 (1983).

    Article  Google Scholar 

  45. M. Armand, D. V. Bui, J. Chevrier, and N. T. Linh, High power microwave amplification with InP MISFETs, in Proceedings of IEEE/Cornell Conference on High-Speed Semiconductor Devices and Circuits, IEEE Cat. No. 83chl959–6, pp. 218–225, Ithaca, New York, 1983.

    Google Scholar 

  46. T. M. Hyltin, Microstrip transmission on semiconductor substrates, IEEE Trans. Microwave Theory Tech. MTT-13, 777–781 (1965).

    Article  Google Scholar 

  47. E. Mehal and R. W. Wacker, GaAs integrated microwave circuits, IEEE Trans. Microwave Theory Tech. MTT-16, 451–454 (1968).

    Article  Google Scholar 

  48. R. S. Pengelly and J. A. Turner, Monolithic broadband GaAs FET amplifiers, Electron. Lett. 12, 251–252 (1976).

    Article  Google Scholar 

  49. R. A. Pucel, Design considerations for monolithic microwave circuits, IEEE Trans. Microwave Theory Techniques MTT-29(6), 513–534 (1981).

    Article  Google Scholar 

  50. C. Kermarrec, J. Gaguet, P. Harrop, and C. Tsironis, Monolithic circuits for 12 GHz direct broadcasting satellite reception, in Proc. 1982 Microwave and Millimeter-Wave Monolithic Circuits Symp., June 1982, Dallas, p. 5.

    Google Scholar 

  51. W. C Petersen, A. K. Gupta, and D. R. Decker, A monolithic GaAs dc to 2 GHz feedback amplifier, IEEE Trans. Electron Devices ED-30, 27–29 (1983).

    Article  Google Scholar 

  52. R. L. Van Tuyl, V. Kumar, D. C D’Avanzo, T. W. Taylor, V. E. Peterson, D. P. Hornbuckle, R. A Fisher, and D. B. Estreich, A manufacturing process for analog and digital gallium arsenide integrated circuits, IEEE Trans. Electron Devices ED-29(7), 1032–1037 (1982).

    Google Scholar 

  53. A. K. Gupta, W. C Petersen, and D. R. Decker, Yield considerations for ion implanted GaAs MMICs, IEEE Trans. Electron Devices ED-30, 16–20 (1983).

    Article  Google Scholar 

  54. L. R. Decker, W. C Petersen, and A. K. Gupta, Monolithic GaAs microwave analog integrated circuits, Electronics Technology and Devices Lab., Technical report No. DELET-TR-78–2999-F Final Report, Aug. 1982.

    Google Scholar 

  55. A. K. Gupta, D. P. Siu, and K. T. Ip, Low-noise MESFETs for ion-implanted GaAs MMICs, IEEE Trans. Electron Devices ED-30(12), 1850–1854 (1983).

    Article  Google Scholar 

  56. V. Sokolov, J. J. Geddes, A. Contolatis, P. E. Bauhahn, and C. Chao, A Ku-band GaAs monolithic phase shifter, IEEE Trans. Electron Devices ED-30(12), 1855–1861 (1983).

    Article  Google Scholar 

  57. T. Sugiura, H. Itoh, T. Tsuji, and K. Honjo, 12 GHz-band low-noise GaAs monolithic amplifiers, IEEE Trans. Electron Devices ED-30(12), 1861–1866 (1983).

    Article  Google Scholar 

  58. S. Hori, K. Kaprei, K. Shibata, M. Tatematsu, K. Mishima, and S. Okana, GaAs monolithic MIC’s for direct broadcast satellite receivers, IEEE Trans. Electron Devices ED-30(12), 1867–1874 (1983).

    Article  Google Scholar 

  59. G. Avery, The GaAs IC industry structure—Present and future, GaAs IC Symposium Technical Digest, p. 3, Phoenix, Arizona, October 1983.

    Google Scholar 

  60. T. Sugiura, K. Honjo, and T. Tsuji, 12 GHz-band GaAs dual-gate MESFET monolithic mixers, GaAs IC Symposium Technical Digest, pp. 3–6, Phoenix, Arizona, October 1983.

    Google Scholar 

  61. S. Moghe, T. Andrade, G. Policky, and C. Huang, A wideband two stage miniature amplifier, GaAs IC Symposium Technical Digest, pp. 7–10, Phoenix, Arizona, October 1983.

    Google Scholar 

  62. G. Kaelin, J. Seligman, and A. Gupta, 20 GHz two stage low noise monolithic amplifier, GaAs IC Symposium Technical Digest, pp. 11–12, Phoenix, Arizona, October 1983.

    Google Scholar 

  63. B. Considine and D. Wandrei, X-band receive module using monolithic GaAs MMIC’s, GaAs IC Symposium Technical Digest, pp. 13–15, Phoenix, Arizona, October 1983.

    Google Scholar 

  64. H. Finlay, J. Jenkins, R. Pengelly, and J. Cockrill, Accurate coupling predictions and assessments in MMIC networks, GaAs IC Symposium Technical Digest, pp. 16–19, Phoenix, Arizona, October 1983.

    Google Scholar 

  65. M. Le Brun, P. Jay, C. Rumelhard, G. Rey, and P. Delescluse, Monolithic microwave ampifier using a two-dimensional electron GAS FET—A comparison with GaAs, GaAs IC Symposium Technical Digest, pp. 20–24, Phoenix, Arizona, October 1983.

    Google Scholar 

  66. C. Suckling, M. Williams, T. Banbridge, R. Pengelly, K. Vanner, and R. S. Butlin, An 5-band phase shifter using monolithic GaAs circuits, GaAs IC Symposium Technical Digest, pp. 102–105, Phoenix, Arizona, October 1983.

    Google Scholar 

  67. Y. Ayasli, R. Mozzi, T. Tsukii, and L. Reynolds, 6–19 GHz GaAs FET transmit-receive switch, GaAs IC Symposium Technical Digest, pp. 106–108, Phoenix, Arizona, October 1983.

    Google Scholar 

  68. E. Strid, A monolithic 10 GHz vector modulator, GaAs IC Symposium Technical Digest, pp. 109–112, Phoenix, Arizona, October 1983.

    Google Scholar 

  69. G. Kaelin, J. Seligman, and A. Gupta, A wide band medium-power monolithic microwave amplifier, GaAs Symposium Technical Digest, pp. 113–114, Phoenix, Arizona, October 1983.

    Google Scholar 

  70. J. Dormail, Y. Tajima, R. Mozzi, M. Durschlag, S. McOwen, and A. Morris, A 2–8 GHz 2-watt monolithic amplifier, GaAs IC Symposium Technical Digest, pp. 115–118, Phoenix, Arizona, October 1983.

    Google Scholar 

  71. W. Petersen and A. Gupta, A three-stage power amplifier for a 20 GHz monolithic transmit module, GaAs IC Symposium Technical Digest, pp. 119–122, Phoenix, Arizona, October 1983.

    Google Scholar 

  72. L. C Upadhyayula, M. Kumar, and H. C. Huang, GaAs MMICs could carry the waves of the high-volume future, Microwave Syst. News July, 58 (1983).

    Google Scholar 

  73. H. Q. Tserng and H. M. Macksey, Performance of monolithic GaAs FET oscillators at J-band, IEEE Trans. Electron Devices ED-28, 163–165 (1981).

    Article  Google Scholar 

  74. M. Kumar, G. C. Taylor, and H. C. Huang, Monolithic dual-gate FET amplifier, IEEE Trans. Electron. Devices ED-28, 197–198 (1981).

    Article  Google Scholar 

  75. M. Kumar, S. N. Subbarao, R. J. Menna, and H. C Huang, Monolithic GaAs interdigitated couplers, IEEE Trans. Microwave Theory Techniques MMT-31(1), 29–32 (1983).

    Article  Google Scholar 

  76. M. Kumar, S. N. Subbarao, R. J. Menna, and H. C. Huang, Broadband active phase shifter using dual-gate MESFET, IEEE Trans. Microwave Theory Techniques MTT-29, 1098–1102 (1981).

    Article  Google Scholar 

  77. R. L. Vantuyl and C. Liechti, High-speed GaAs MSI, ISSCC Digest of Technical Papers, pp. 20–21, February 1976.

    Google Scholar 

  78. L. C. Upadhyayula, GaAs FET comparators for high-speed analog-to-digital conversion, in Digest of Technical Papers, GaAs IC Symp., Lake Tahoe, NE, Sept. 1979.

    Google Scholar 

  79. L. C Upadhyayula, W. R. Curtice, and R. Smith, Design, fabrication and evaluation of 2- and 3-bit GaAs MESFET analog-to-digital converter ICs, IEEE Trans. MTT MTT-31(1), 2 (1983).

    Article  Google Scholar 

  80. W. C Petersen, D. R. Decker, A. K. Gupta, J. Dully, and D. R. Ch’en, A monolithic GaAs 0.1 to 10 GHz amplifier, IEEE MTT-S Symposium Digest, No. 81CH1592–5, pp. 354–355, June 1981.

    Google Scholar 

  81. Y. Ayasli, R. Mozzi, L. Hanes, and L. D Reynolds, An X-band 10 W monolithic transmit-receive GaAs FET switch, 1982 Monolithic Circuits Symposium Digest, IEEE catalog No. 82CH1784–8, pp. 42–46.

    Google Scholar 

  82. M. Kumar, S. N. Subbarao, R. J. Menna, and H. C Huang, Monolithic GaAs interdigitated 90° hybrids with 50- and 25-Ohm impedance, 1982 Monolithic Circuits Symposium Digest, IEEE catalog No. 82Chl794–9, pp. 50–53.

    Google Scholar 

  83. G. E. Brehm and R. E. Lehmann, Monolithic GaAs FET low-noise amplifiers for X-band applications, Microwave J. 25(11), 103–107 (1982).

    Google Scholar 

  84. M. C. Driver, G. W. Eldridge, and J. E. Degenford, Broadband monolithic integrated power amplifiers in GaAs, Microwave J. 25(11), 87–94 (1982).

    Google Scholar 

  85. A. Contolatis, C. Chao, S. Jamison, and C. Butter, Ku-band monolithic GaAs balanced mixers, 1982 Monolithic Circuits Symposium Digest, IEEE catalog No. 82CH1784–8, pp. 28–30.

    Google Scholar 

  86. B. N. Scott and G. E. Brehm, Monolithic voltage controlled oscillator for X and Ku-bands, IEEE MTT-S Symposium Digest, No. 82CH1705–3, pp. 482–485, June 1982.

    Google Scholar 

  87. D. R. Decker, Are MMICs a fad or fact?, Microwave Syst. News 13(7) (1983).

    Google Scholar 

  88. L. Besser, Synthesize amplifiers exactly, Microwave Syst. News Oct., 28–40 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shur, M. (1987). GaAs FET Amplifiers and Microwave Monolithic Integrated Circuits. In: GaAs Devices and Circuits. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1989-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1989-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1991-5

  • Online ISBN: 978-1-4899-1989-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics