Skip to main content

Transferred Electron Amplifiers and Logic and Functional Devices

  • Chapter
GaAs Devices and Circuits

Part of the book series: Microdevices ((MDPF))

  • 401 Accesses

Abstract

Transferred electron amplifiers were first developed by Thim et al. in 1965 [1], who used subcritically doped devices [n 0 L < (n 0 L) 1 ; see Section 4–1] to achieve microwave amplification. Since that time other types of transferred electron amplifiers have been developed with the output power up to several tenths of watts. Even higher output powers are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Thim, M. R. Barber, B. M. Hakki, S. Knight, and M. Uenohara, Microwave amplification in dc-biased bulk semiconductors, Appl. Phys. Lett. 7(6), 167–168 (1965).

    Google Scholar 

  2. P. Kozdon and P. N. Robson, Two-port amplifiers using the transferred electron effect in GaAs, in 8th Int. Conf. on Microwave and Optical Generation and Amplification (MOGA). Amsterdam, 1970, paper 16.2.

    Google Scholar 

  3. R. H. Dean, A. B. Dreeben, J. F. Kaminski, and A. Triano, Traveling-wave amplifier using epitaxial GaAs layer, Electron. Lett. 6(24), 775–776 (1970).

    Google Scholar 

  4. S. Kataoka, H. Tateno, and M. Kawashima, Improvements in efficiency and tunability of Gunn oscillators by dielectric-surface loading, Electron. Lett. 25(20), 491–492 (1969).

    Google Scholar 

  5. H. Pollmann and R. W. H. Engelmann, On supercritical reflection-type amplification and the stability criterion in bulk GaAs devices, MOGA-70, 1970, Summaries, No. 16–5.

    Google Scholar 

  6. W. Frey, R. W. H. Engelmann, and B. G. Bosch, Microwave travelling-wave amplification in bulk gallium-arsenide, 8th Int. Conf. on Microwave and Optical Generation and Amplification (MOGA), Amsterdam, 1970, paper 16.3.

    Google Scholar 

  7. T. E. Walsch, B. S. Perlman, and R. E. Enstrom, Stabilized supercritical transferred electron amplifiers, IEEE J. Solid-State Circuits SC-4, 374 (1969).

    Google Scholar 

  8. B. S. Perlman, CW microwave amplification from circuit stabilized epitaxial GaAs transferred electron devices, IEEE J. Solid-State Circuits SC-5, 331 (1970).

    Google Scholar 

  9. B. S. Perlman, C. L Upadhyayula, and R. E. Marx, Wide-band reflection-type transferred electron amplifiers, IEEE Trans. Microwave Theory Techniques MTT-18, 911 (1970).

    Google Scholar 

  10. B. S. Perlman, Microwave amplification using transferred-electron devices in prototype filter equalization networks, RCA Rev.32, 3 (1971).

    Google Scholar 

  11. B. S. Perlman and C. L. Upadhyayula, Transferred electron amps challenge the TWT, Microwaves 9(12), 59 (1970).

    Google Scholar 

  12. B. S. Perlman, C. L. Upadhyayula, and W. W. Sienkanowicz, Microwave properties and applications of negative conductance TE devices, Proc. IEEE 59, 1229 (1971).

    Google Scholar 

  13. C. L. Upadhyayula and B. S. Perlman, Design and performance of transferred electron amplifiers using distributed equalizer networks, IEEE Int. Solid-State Circuits Conference, Philadelphia, PA, 1972; Digest of Technical Papers, p. 40.

    Google Scholar 

  14. J. Magarshack and A. Mircea, Wideband CW amplification in X band with Gunn diodes, IEEE Int. Solid-State Circuits Conference, Philadelphia, 1970; Digest of Technical Papers, p. 134.

    Google Scholar 

  15. J. Magarshac and A. Mircea, Stabilization and Wideband amplification using overcritically doped transferred-electron diodes, Proc. 8th Int. Conference MOGA, Amsterdam, Deventer, Kluwer, 1970, p. 16J19.

    Google Scholar 

  16. R. Spitalnik, M. P. Shaw, A. Rabier, and J. Magarshack, On the mechanism for microwave amplification in “supercritically” doped n-GaAs, Appl. Phys. Lett. 212(4), 162–164 (1973).

    Google Scholar 

  17. B. I. Jeppsson and P. Jeppesen, On the GaAs supercritical TEA, Paper presented at the 2nd European Solid-State Device Research Conference (ESSDERC), Lancaster, 1970.

    Google Scholar 

  18. P. Jeppesen and B. Jeppson, The influence of diffusion on the stability of the supercritical transferred electron amplifier, Proc. IEEE 60(5), 452–454 (1972).

    Google Scholar 

  19. H. Pollman and R. W. H. Engelmann, On supercritical reflection-type amplification and the stability criterion in bulk GaAs devices Proc. 8th Int. Conference MOGA Amsterdam, 1970, Deventer, Kluwer 1970, p. 16.24.

    Google Scholar 

  20. R. W. H. Engelmann, On “supercritical” transferred-electron amplifiers, Arch. Elecktron. Ubert-ragungstechn.26, 357 (1972).

    Google Scholar 

  21. I. Kuru, performance degradation of Gunn diodes at elevated temperature, Proc. 2nd Conference on Solid State Devices, Tokyo, J.pan, 1970: J. Jpn. Soc. Appl. Phys. 40 Suppl., 137 (1971).

    Google Scholar 

  22. J. W. Monroe and W. K. Kennedy, Amplifiers go solid state at X- and K-band, Microwave J. 14(12), 28 (1971).

    Google Scholar 

  23. J. W. Monroe and W. K. Kennedy, Amplifiers go solid state at X- and K-band, Microwave J. 14(12), 28 (1971).

    Google Scholar 

  24. J. Margashak, A. Rabier, and R. Spitalnik, Optimum design of transferred-electron amplifier devices on GaAs, IEEE Trans. Electron Devices ED-21, 652–654 (1974).

    Google Scholar 

  25. R. M. Raymond, H. Kroemer, and R. E. Hayes, Design of cathode doping notches to achieve uniform fields in transferred electron devices, IEEE Trans. Electron Devices ED-24(3), 192–195 (1977).

    Google Scholar 

  26. C. Berry, G. S. Hobson, M. J. Howard, and P. N. Robson, Design of transferred electron amplifers with good frequency stability, IEEE Trans. Electron Devices ED-24(3), 270–274 (1977).

    Google Scholar 

  27. R. H. Dean and R. J. Matarese, The GaAs travelling wave amplifier as a new kind of microwave transistor, Proc. IEEE 60, 1486–1502 (1972).

    Google Scholar 

  28. R. H. Dean, A. B. Dreeben, J. J. Hughes, R. J. Matarese, and L. S. Napoli, Broad-band microwave measurements on GaAs “traveling wave” transistors, IEEE Trans. Microwave Theory Technique MTT-21, 805–809 (1973).

    Google Scholar 

  29. R. H. Dean, R. E. DeBrecht, A. B. Dreeben, J. J. Hughes, R. J. Matarese, and L. S. Napoli, GaAs travelling wave transistor, 1973 IEEE-GMTT International Microwave Symp., IEEE Cat. No. 73 CHO 736–9 MTT, pp. 250–251.

    Google Scholar 

  30. D. E. McCumber and A. G. Chynoweth, Theory of negative-conductance amplification and of Gunn instabilities in two-valley semiconductors, IEEE Trans. ED-13(1), 4–21 (1966).

    Google Scholar 

  31. S. Y. Naryaan and F. Sterzer, Stabilization of transferred-electron amplifiers with large n 0 L products, Electron. Lett. 5(2), 30–31 (1969).

    Google Scholar 

  32. F. Sterzer, Stabilization of supercritical transferred-electron amplifiers, Proc. IEEE 57(10), 1781–1783 (1969).

    Google Scholar 

  33. S. Mahrous and H. L. Hartnagel, Gunn effect domain formation controlled by a complex load, Brit. J. Appl. Phys. (J. Phys. D) 2(1), 1011 (1969).

    Google Scholar 

  34. H. W. Thim and M. R. Barber, Microwave amplification in GaAs bulk semiconductor, IEEE Trans. Electron Devices ED-13(1), 718–719 (1966).

    Google Scholar 

  35. R. Charlton and G. S. Hobson, The effect of cathode notch doping profiles on supercritical transferred-electron amplifiers, IEEE Trans. Electron Devices ED-20, 812–817 (1973).

    Google Scholar 

  36. H. W. Thim and W. Hayde, Microwave amplifier circuit considerations, in Microwave Devices. Device Circuit Interactions, Ed. by M. J. Howes and D. V. Morgan, Wiley, New York, 1978, pp. 267–313.

    Google Scholar 

  37. M. M. Atalla and J. L. Moll, Emitter controlled negative resistance in GaAs, Solid State Electron.12, 619–129 (1969).

    Google Scholar 

  38. H. W. Thim, U.S. Patent 3,537,021, 1970.

    Google Scholar 

  39. B. W. Clark, H. G. B. Hicks, and J. S. Heeks, An electronically controlled injection limited cathode for GaAs transferred electron devices, ESSDERC 1973, Nottingham, England, paper A6.2.

    Google Scholar 

  40. W. P. Dumke, J. M. Woodall, and V. L. Rideout, GaAs-GaAlAs heterojunction transistor for high frequency operation, Solid State Electron.15, 1339–1343 (1972).

    Google Scholar 

  41. T. Hariu, S. Ono and Y. Shibata, Wide-band performance of the injection limited Gunn diode, Electron. Lett. 6(21), 666–667 (1970).

    Google Scholar 

  42. A. C. Baynham, Wave propagation in negative differential conductivity media: n-Ge, IBM J. Res. Dev.13(5), 568–572 (1969).

    Google Scholar 

  43. A. C. Baynham, Emission of TEM waves generated within an n-type Ge, Electron. Lett. 6(10), 306–307 (1970).

    Google Scholar 

  44. A. C. Baynham and D. J. Colliver, New mode of microwave emission from GaAs, Electron. Lett. 6(16), 498–500 (1970).

    Google Scholar 

  45. A. C. Baynham, Absolute instability of electromagnetic waves within large subcritically doped gallium arsenide samples, J. Appl. Phys.44(3), 1247–1250 (1973).

    Google Scholar 

  46. P. L. Fleming, The active medium propagation device, Proc. IEEE (Lett.) 63(8), 1253–1254 (1975).

    MathSciNet  Google Scholar 

  47. P. L. Fleming, U.S. Patent No. 3 975 690, Planar transmission line comprising a material having negative differential conductivity, Aug. 17, 1976.

    Google Scholar 

  48. P. L. Fleming and H. E. Carlson, Reflection-mode amplifier utilizing GaAs active-medium-propagation devices Electron. Lett. 15(24), 787–788 (1979).

    Google Scholar 

  49. P. L. Fleming, T. Smith, H. Carlson, and W. A. Cox, Continuous wave operation of active medium propagation devices, IEEE Trans. Electron Devices Ed-26(9), 1267–1272 (1979).

    Google Scholar 

  50. H. W. Thim, Linear negative conductance amplification with Gunn oscillators, Proc. IEEE 55(3), 446–447 (1967).

    Google Scholar 

  51. H. W. Thim, Linear microwave amplification with Gunn oscillators, IEEE Trans. ED-14(9), 517–522 (1967).

    Google Scholar 

  52. H. W. Thim, Linear negative conductance amplification with Gunn oscillators, Proc. IEEE 55(3), 446–447 (1967).

    Google Scholar 

  53. P. Olfs, An oscillating Gunn amplifier with E010-resonator, Proc. 8th Int. Conference MOGA, Amserdam, 1970, Deventer, Kluwer, 1970, p. 2J21.

    Google Scholar 

  54. Kh. A. Abdel Fatakh and K. S. Rzhevkin, Amplification of microwave oscillations within GaAs in the presence of domain generation, Sov. Radio Eng. Electron Phys. 15.„ 1056 (1970).

    Google Scholar 

  55. J. E. Carrol, Resonant-circuit operation of Gunn diodes: A Self pumped parametric oscillator, Electron Lett. 2(6), 215–216 (1966).

    Google Scholar 

  56. D. J. Vinney, Possible traveling-wave parametric amplifier using Gunn effect, Electron. Lett. 2(10), 357–358 (1966).

    Google Scholar 

  57. C. S. Aitchison, Possible Gunn-effect parametric amplifier, Electron. Lett. 4(1), 15–16 (1968).

    MathSciNet  Google Scholar 

  58. C. S. Aitchison, C. D. Corbey, and B. H. Newton, Self-pumped Gunn-effect parametric amplifier, Electron. Lett. 5(2), 36–37 (1969).

    Google Scholar 

  59. H. J. Kuno, Self-pumped parametric amplification with GaAs transferred-electron devices, Electron. Lett. 5(11), 232(1969).

    Google Scholar 

  60. R. R. Spiwak, Frequency conversion and amplification with an LSA diode oscillator, IEEE Trans. Electron Devices ED-15, 614 (1968).

    Google Scholar 

  61. B. Majborn, On the possibility of millimeter wave amplification with an X-band LSA oscillator, Proc. European Microwave Conference London, 1969, IEEE Conf. Publication No 587, p. 227.

    Google Scholar 

  62. N. Hasizume and S. Katoka, Transferred-electron negative-resistance amplifier, Electron. Lett. 6(2), 34–35 (1970).

    Google Scholar 

  63. P. N. Robson, G. S. Kino, and B. Fay, Two-port microwave amplification in long samples of gallium arsenide, IEEE Trans. Electron Devices ED-16, 612 (1967).

    Google Scholar 

  64. R. H. Dean, A. B. Dreeben, J. F. Kaminski, and A. Triano, Traveling wave amplifier using thin epitaxial GaAs layer, Electron. Lett. 6, 775–776 (1970).

    Google Scholar 

  65. J. E. Sitch and P. N. Robson, The noise measure of GaAs and InP transferred electron amplifiers, IEEE Trans. Electron Devices 23(9), 1088–1094 (1976).

    Google Scholar 

  66. R. M. Corlett, I. Griffith, and J. J. Purcell, A low noise InP reflection amplifier, Proceedings of 5th European Microwave Conference, Hamburg, 1975, paper 10.3.

    Google Scholar 

  67. C. P. Sandbank, Synthesis of complex electronic functions by solid state bulk effects, Solid State Electron 10(5), 369–380 (1967).

    Google Scholar 

  68. J. A. Copeland, T. Hayashi, and M. Uenohara, Logic and memory elements using two valley semiconductors, Proc. IEEE 55(4), 584–585 (1967).

    Google Scholar 

  69. H. L. Hartnagel, Digital logic-circuit applications of Gunn diodes, Proc. IEEE 55(7), 1236–1237 (1967).

    Google Scholar 

  70. S. H. Izadpanahj and H. L. Hartnagel, Experimental verification of Gunn-effect comparator, Proc. IEEE 55(10), 1748 (1967).

    Google Scholar 

  71. R. S. Engelbrecht, Solid-state bulk phenomena and their application to integrated electronics, IEEE Trans SC-3(3), 210–212 (1968).

    MathSciNet  Google Scholar 

  72. H. L. Hartnagel, Gunn-effect Logic Devices, American Elsevier, New York, 1971.

    Google Scholar 

  73. H. Hartnagel, Some basic logic circuits employing Gunn-effect devices, Solid State Electron.11(5), 568–572 (1968).

    Google Scholar 

  74. T. Sugeta, T. Ikoma, and H. Yanai, Bulk neuristor using the Gunn effect, Proc. IEEE 56(2), 239–240 (1968).

    Google Scholar 

  75. R. Engelmann and W. Heinle, Pulse discrimination by Gunn-effect switching, Solid State Electron. 14(1), 1–16.

    Google Scholar 

  76. M. Nakamura, H. Kurono, M. Hirao, T. Toyabe, and H. Kodera, High-speed pulse response of planar-type Gunn diodes, Proc. IEEE 59(6), 1039–1040 (1971).

    Google Scholar 

  77. H. L. Hartnagel, Theory of Gunn-effect logic, Sol. St. Electron.12(1), 19–30 (1969).

    Google Scholar 

  78. G. White and R. E. Sgams, A 2-GHz multiple Gunn device logic circuit, Proc. IEEE 57(9), 1684–1685 (1969).

    Google Scholar 

  79. G. S. Hobson and S. H. Izadpanah, Random domain triggering in Gunn effect pulse regenerators, Solid State Electron.13(7), 937–942 (1970).

    Google Scholar 

  80. R. F. Fisher, Generation of subnanosecond pulse with bulk GaAs, Proc. IEEE 55(12), 2189 (1967).

    Google Scholar 

  81. S. H. Izadpanah and H. L. Hartnagel, Pulse gain and analogue-to-pulse conversion by Gunn diodes, Electron. Lett. 4(15), 315–316 (1968).

    Google Scholar 

  82. S. H. Izadpanah and H. L. Hartnagel, Memory loop with Gunn-effect pulse diodes, Electron. Lett. 5(3), 53 (1969).

    Google Scholar 

  83. M. E. Levinshtein and M. S. Shur, Transient properties of Gunn diodes, Solid State Electron. 18, 983–990 (1975).

    Google Scholar 

  84. T. Sugeta, N. Suzuki, M. Tanimoto, and H. Yanai. Gunn-effect functional device, report No. 45–11, Meeting of Japanese IEE Proj. Group on transistors, September 1970.

    Google Scholar 

  85. H. Yanai and T. Sujeta, Some features and characteristics of the Gunn effect digital device, Jpn. IECE Nat. Conv. Rec. No. 717, September 1969.

    Google Scholar 

  86. T. Sugeta, H. Yanai, and K. Sekido. Schottky-gate Gunn effect digital device, Proc. IEEE 59, 1629 (1971).

    Google Scholar 

  87. T. Sugeta, H. Yanai, and T. Ikoma, Switching properties of bulk-effect digital devices, IEEE Trans. Electron. Devices ED-17, 940 (1970).

    Google Scholar 

  88. K. Mause, H. Salow, A. Schlachetzki, K. H. Bachern, and K. Heime, Circuit integration with gate controlled Gunn devices, in Proc. 4th Intern. Symposium on GaAs and related compounds, Boulder, Colorado, 1972, p. 275.

    Google Scholar 

  89. H. Yanai, T. Sugeta, and K. Sekido, Schottky-gate Gunn effect digital device, Paper at Int. Electron Devices Meeting, Washington, D.C., Oct. 11–13, 1971.

    Google Scholar 

  90. T. Sugeta, H. Yanai, and K. Sekido, Schottky-gate bulk-effect digital device, Proc. IEEE 59, 1629 (1971).

    Google Scholar 

  91. T. Sugeta and H. Yanai, Gunn-effect digital functional devices and their performance evaluation, Trans. IECE (Jpn.) 55-C, 437 (1972).

    Google Scholar 

  92. T. Sugeta and H. Yanai, Signal-processing of a Gunn-effect digital functional device (in Japanese), Jpn. IECE Techn. Group on Circuits and System Theory, report No. CT-71–71 (1972–02), February 24, 1972, Trans. IECE (Jpn.) 55-C, 445 (1972).

    Google Scholar 

  93. T. Sugeta, T. M. Tanimote, and H. Yanai, Gunn effect digital functional device, J. Fac. Eng. Univ. Tokyo (B) 31, 772 (1972).

    Google Scholar 

  94. B. G. Bosch and R. W. H. Engelmann, Gunn-Effect Electronics, Wiley, New York, 1975.

    Google Scholar 

  95. S. Kataoka, N. Hashizume, M. Kawashima, and Y. Komamiya, High field domain functional logic devices with multiple control electrodes, in Proc. 4th Beiennial Cornell Electrical Engineering Conf., pp. 225–234, 1973.

    Google Scholar 

  96. N. Hashizume, S. Kataoka, Y. Komamiya, K. Tomizawa, and N. Morisue, GaAs 4 bit gate device of integrated Gunn elements and MESFETs, in Proc. 6th Int. Symp. on Gallium Arsenide and Related Compounds (St. Louis, Mo.), pp. 245–253, 1976.

    Google Scholar 

  97. N. Hashizume, M. Kawashima, K. Tomizawa, M. Morisue, and S. Katoka, Gunn effect high-speed carry finding device for 8 bit binary adder, in Tech. Dig. Ind. Electron Device Meet., pp. 209–212, 1977.

    Google Scholar 

  98. N. Hasizume, S. Kataoka, and K. Tomizawa, 20 psJgate Gunn-effect high-speed carry finding device, Electron. Lett. 14, 91–92 (1978).

    Google Scholar 

  99. N. Hashizume and S. Kataoka, Gunn-effect inhibitor and its application to high-speed carry finding device, IEEE Trans. Electron Devices ED-26(3), 183–190 (1979).

    Google Scholar 

  100. K. Marese, Multiplexing and demultiplexing techniques with Gunn devices in the gigabit-per-second range, IEEE Trans. Microwave Theory Technique MTT-24(12), 926–929 (1976).

    Google Scholar 

  101. C. L. Upadhyayla, R. E. Smith, J. F. Wilhelm, S. T. Jolly, and J. P. Paczkowski, Transferred electron logic devices for gigabit-rate signal processing, IEEE Trans. Microwave Theory Techniques MTT-24(12), 920–926 (1976).

    Google Scholar 

  102. M. Shoji, Theory of transverse extension of Gunn domains, J. Appl. Phys.41, 774–0778 (1970).

    Google Scholar 

  103. K. Tomizawa, M. Kawashima, and S. Kataoka, New logic functional device using transverse spreading of a high-field domain in n-type GaAs, Electron Lett. 7, 239–240 (1971).

    Google Scholar 

  104. K. Tomizawa and S. Kataoka, Dependence of transverse spreading velocity of a high-field domain in a GaAs bulk element on the bias electric field, Electron. Lett. 8, 130–131 (1972).

    Google Scholar 

  105. S. Hasuo, T. Nakamura, G. Goto, K. Kazetani, H. Ishiwari, H. Suzuki, and T. Isobe, Gunn-effect logic circuits for a high speed computer, in Proc. 5th Biennial Cornell Electrical Engineering Conf., pp. 185–194, 1975.

    Google Scholar 

  106. G. Goto, T. Nakamura, S. Hasuo, K. Kazetani, and T. Isobe, Gunn-effect logic device using transverse extension of a high field domain, IEEE Trans. Electron Devices ED-23, 21–27 (1976).

    Google Scholar 

  107. M. Shoji, Functional bulk semiconductor oscillators, IEEE Trans. ED-14(9), 535–546 (1967).

    Google Scholar 

  108. R. S. Engelbrecht, Bulk effect devices for future transmission systems, Bell. Lab. Rec.45(6), 192–201 (1967).

    Google Scholar 

  109. C. O. Newton and G. Bew, Frequency measurements on Gunn effect devices with concentric electrodes, J. Phys. D: Appl. Phys.3(8), 1189–1198 (1970).

    Google Scholar 

  110. G. M. Clark, A. L. Edridge and J. C. Bass, Planar Gunn-effect oscillators with concentric electrodes, Electron. Lett. 5(20), 471–472 (1969).

    Google Scholar 

  111. C. P. Sandbank, Synthesis of complex electronic functions by solid state bulk effects, Solid State Electron.10(5), 369–380 (1967).

    Google Scholar 

  112. K. R. Hofmann, Gunn oscillations in thin samples with capacitive surface loading, Electron. Lett. 5, 289 (1969).

    Google Scholar 

  113. A. A. Kastalski, E. I. Leonov, and M. S. Shur, Devices with variable energy gap, Sov. Phys. Semicond.4(8), 1384–1386 (1971).

    Google Scholar 

  114. M. E. Levinstein, Y. K. Pozhela, and M. S. Shur, Gunn Effect, Soviet Radio, Moscow, 1975 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shur, M. (1987). Transferred Electron Amplifiers and Logic and Functional Devices. In: GaAs Devices and Circuits. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1989-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1989-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1991-5

  • Online ISBN: 978-1-4899-1989-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics