Skip to main content

Ridley-Watkins-Hilsum-Gunn Effect

  • Chapter
GaAs Devices and Circuits

Part of the book series: Microdevices ((MDPF))

Abstract

In 1963 J. B. Gunn studied the current-voltage characteristics of GaAs and InP devices. He discovered that when the applied electric field

$$F = U/L$$
((4-1-1))

(where U is the bias voltage, L is the sample length) was greater than some critical value F t (~3kV/cm for GaAs and ~6kVJcm for InP), spontaneous current oscillations appeared in the circuit [1] (see Fig. 4–1–1). Later Gunn published the results of the detailed experimental study of this effect [2]. Using probe measurements of the potential distribution across the sample he established that a propagating high field domain forms in the sample when F ≤ F t . It nucleates near the cathode, propagates toward the anode with velocity of the order of 105m/s, and disappears near the anode (see Fig. 4–1–2). Then this process repeats itself. The domain formation leads to a current drop, the domain annihilation results in an increase in the current, and periodic current oscillations exist in the circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Gunn, Microwave oscillations of current in IH-V semiconductors, Solid State Commun. 1 (4), 88–91 (1963).

    Article  Google Scholar 

  2. J. B. Gunn, Instabilities of current in III-V semiconductors, IBMJ. Res. Dev. 8 (2), 141–159 (1964).

    Article  Google Scholar 

  3. P. Guetin, Contribution to the experimental study of the Gunn effect in the long samples, IEEE Trans. Electron Devices ED-14 (9), 552–562 (1967).

    Article  Google Scholar 

  4. B. K. Ridley, Specific negative resistance in solids, Proc. Phys. Soc. 82 (12), 954–966 (1963).

    Article  Google Scholar 

  5. B. K. Ridley and T. B. Watkins, The possibility of negative resistance, Proc. Phys. Soc. 78 (8), 293–304 (1961).

    Article  Google Scholar 

  6. C. Husum, Transferred electron amplifiers and oscillators, Proc. IRE 50 (2), 185–189 (1962).

    Article  Google Scholar 

  7. H. Kroemer, Theory of the Gunn effect, Proc. IEEE 52 (12), 1736 (1964).

    Article  Google Scholar 

  8. M. E. Levinstein, Y. K. Pozhela, and M. S. Shur, Gunn Effect, Sov. Radio, Moscow, 1975 (in Russian).

    Google Scholar 

  9. H. W. Thim, Linear negative conductance amplification with Gunn oscillators, Proc. IEEE 55, 446–447 (1967).

    Article  Google Scholar 

  10. J. S. Heeks, A. D. Wood, and C. P. Sandbank, Coherent high field oscillations in samples of GaAs, Proc. IEEE 53 (5), 554–555 (1965).

    Article  Google Scholar 

  11. C. P. Sandbank, Synthesis of complex electronic functions by solid state bulk effects, Solid State Electron. 10 (5), 369–380 (1967).

    Article  Google Scholar 

  12. J. A. Copeland, T. Hayashi and M. Venohara, Logic and memory elements using two valley semiconductors, Proc. IEEE 55 (7), 1236–1237 (1967).

    Google Scholar 

  13. H. Kroemer, The Gunn effect under imperfect cathode boundary conditions, IEEE Trans. ED-15 (11), 819–837 (1968).

    Google Scholar 

  14. M. P. Shaw, H. L. Grubin, and P. R. Solomon, The Gunn-Hilsum effect, New York, Academic Press, 1979.

    Google Scholar 

  15. K. W. Boer and G. Dohler, Influence of boundary conditions on high field domains in Gunn diodes, Phys. Rev. 186 (3), 793–800 (1969).

    Article  Google Scholar 

  16. M. E. Levinstein and M. S. Shur, Current stabilizer on Gunn diode, Sov. Phys. Semicond. 3 (7), 915 (1970).

    Google Scholar 

  17. R. Zuleeg, Possible ballistic effects in GaAs current limiters, IEEE Electron Device Lett. EDL-1 (11), 234–235, (1980).

    Article  Google Scholar 

  18. D. E. McCumber and A. G. Chynoweth, Theory of negative conductance amplification and of Gunn instabilities in “two-valley” semiconductors, IEEE Trans. Electron Devices ED-13 (1), 4–21 (1966).

    Article  Google Scholar 

  19. H. Kroemer, Detailed theory of the negative conductance of bulk negative mobility amplifiers in the limit of zero ion density, IEEE Trans. Electron Devices ED-14 (9), 476–492 (1967).

    Article  Google Scholar 

  20. R. Holmstrom, Small signal behavior of Gunn diodes, IEEE Trans. Electron Devices ED-14 (9), 526–531 (1967).

    Article  Google Scholar 

  21. P. N. Butcher, W. Fawcett, and C. Hilsum, A simple analysis of stable domain propagation in the Gunn effect, Brit. J. Appl. Phys. 17 (7), 841–850 (1966).

    Article  Google Scholar 

  22. B. L. Gelmont and M. S. Shur, Analytical theory of stable domains in high-doped Gunn diodes, Electron. Lett. 6 (12), 385–387 (1970).

    Article  Google Scholar 

  23. M. S. Shur, Maximum electric field in high field domain, Electron. Lett. 14 (16), 521–522 (1978).

    Article  Google Scholar 

  24. L. F. Eastman, S. Tiwari, and M. S. Shur, Design criteria for GaAs MESFETs related to stationary high field domains, Solid State Electron. 23, 383–389 (1980).

    Article  Google Scholar 

  25. R. A. Warriner, Computer simulation of negative resistance oscillators using a Monte Carlo model of gallium arsenide, IEE J. Solid State Electron Devices 1, 92–96 (1977).

    Article  Google Scholar 

  26. K. Blotekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices ED-17(1), 38–47, 1970.

    Article  Google Scholar 

  27. S. I. Anisimov, V. I. Melnikov, and E. I. Rashba, Concerning one model in the theory of the Gunn effect, Sov. Phys. JETPh Lett. 7 (7), 196, (1968).

    Google Scholar 

  28. A. M. Mazzone and H. D. Rees, Transferred-electron harmonic generators for millimetre band sources, IEE Proc. I, Solid State Electron Devices 127 (4), 149–160 (1980).

    Google Scholar 

  29. A. M. Mazzone and H. D. Rees, Transferred-electron oscillatiors at very high frequencies, Electron. Lett. 17, 539–540 (1981).

    Article  Google Scholar 

  30. J. Owen and G. S. Kino, Theoretical study of Gunn domains and domain avalanching, J. Appl. Phys. 42 (12), 5006–5018 (1971).

    Article  Google Scholar 

  31. J. Kuru, R. N. Robson, and G. S. Kino, Some measurements of the steady-state and transient characteristics of high-field dipole domains in GaAs, IEEE Trans. Electron. Devices ED-15 (1), 21–29 (1968).

    Article  Google Scholar 

  32. K. Kurokawa, Transient behavior of high field domain in bulk semiconductors, Proc. IEEE 55 (9), 16–1616 (1967).

    Article  Google Scholar 

  33. M. S. Shur, Time of domain parameter changes under small bias variations, Sov. Phys. Semicond. 10 (10), 3138–3142 (1968).

    Google Scholar 

  34. M. S. Shur, Analytical theory of domain dynamics, Sov. Phys. Semicond. 7 (6), 1178–1183 (1973).

    Google Scholar 

  35. M. Claasen and E. Reinecker, Equivalent circuit of Gunn devices operating in the monostable switching mode, IEEE Trans. Electron Devices ED-28 (3), 280–284 (1980).

    Article  Google Scholar 

  36. M. E. Levinstein and G. S. Simin, Dynamics of changes in a Gunn domain due to changes in the bias voltage, Sov. Phys. Semicond. 13 (7), 837–839 (1979).

    Google Scholar 

  37. R. B. Robrock II, IEEE Trans. Electron Devices ED-17 (1), 93 (1970).

    Article  Google Scholar 

  38. W. Heinle, Solid State Electron. 21, 583 (1968).

    Article  Google Scholar 

  39. G. S. Gintsberg, V. I. Efimov, B. A. Kalbekov, and R. I. Kleinerman, Elektron Tekh. Ser. 3, Mikroelektron 5, 42 (1973) (in Russian).

    Google Scholar 

  40. M. E. Levinshtein and G. S. Simin, Dynamics of disappearance of a Gunn domain in the anode, Sov. Phys. Semicond. 13 (7), 529–534 (1979).

    Google Scholar 

  41. M. E. Levinshtein and G. S. Simin, Dynamics of dispersal of a Gunn domain at voltages below the disappearance, Sov. Phys. Semicond. 13 (12), 1365–1368 (1979).

    Google Scholar 

  42. H. Kroemer, IEEE Trans. Electron Devices ED-13, 27 (1966).

    Article  Google Scholar 

  43. D. Jones and H. D. Rees, Electron. Lett. 8, 566 (1972).

    Article  Google Scholar 

  44. D. Jones and H. D. Rees, Electron. Lett. 8, 363 (1972).

    Article  Google Scholar 

  45. T. G. Ruttan, Electron. Lett. 11, 293 (1975).

    Article  Google Scholar 

  46. H. Kroemer, Solid-State Electron. 21, 61 (1978).

    Article  Google Scholar 

  47. A. F. Volkov, Sov. Phys. Solid State 8, 2552 (1967).

    Google Scholar 

  48. B. W. Knight and G. A. Peterson, Phys. Rev. 155, 393 (1967).

    Article  Google Scholar 

  49. M. I. D’yakonov, M. E. Levinshtein, and G. S. Simin, Basic properties of an accumulation layer in a Gunn diode, Sov. Phys. Semicond. 15 (11), 1229–1234 (1981).

    Google Scholar 

  50. W. Thim, Experimental verification of bistable switching with Gunn diodes, Electron Lett. 7 (10), 246–247 (1971).

    Article  Google Scholar 

  51. W. Thim, Proc. IEEE. 59, 1285 (1971).

    Article  Google Scholar 

  52. S. H. Izadpanah, Solid State Electron 19, 129 (1976).

    Article  Google Scholar 

  53. P. Iondrup, P. Jeppesen and B. Jeppsson, IEEE Trans. Electron Devices ED-23, 1028 (1976).

    Article  Google Scholar 

  54. I. Magarshack and A. Mirica, Proceedings of Intern. Conf. Microw. and Opt. Generation and Amplification MOGA-70, Amsterdam, pp. 16.19–16.23, 1970.

    Google Scholar 

  55. A. B. Torrens, Appl. Phys. Lett. 24, 432 (1974).

    Article  Google Scholar 

  56. A. Aishima, K. Yokoo and S. Ono, IEEE Trans. ED-25, 640 (1978).

    Article  Google Scholar 

  57. K. Yokoo, S. Ono and A. Aishima, IEEE Trans. ED-27, 208 (1980).

    Article  Google Scholar 

  58. S. Hasuo, T. Nakamura, G. Goto, K. Kazetani, H. Ishiwari, H. Suzuki and T. Izobe, IEEE Trans. ED-23, 1063 (1976).

    Article  Google Scholar 

  59. O. A. Kireev, M. E. Levinshtein and S. L. Rumjantsev, Anode domain transient processes in supercritical Gunn diodes, Solid State Electron. 27 (3), 233–239 (1984).

    Article  Google Scholar 

  60. H. W. Thim and S. Knight, Carrier generation and switching phenomena in n-GaAs devices, Appl. Phys. Lett. 11 (3), 83 (1967).

    Article  Google Scholar 

  61. H. Kroemer, Non-linear space-charge domain dynamics in a semiconductor with negative differential mobility, IEEE Trans. Electron Devices ED-13 (1), 27–40 (1966).

    Article  Google Scholar 

  62. H. Thim and M. R. Barber, Observations of multiple high field domains in n-GaAs, Proc. IEEE 56(1), 110–111 (1968).

    Article  Google Scholar 

  63. M. Ohtomo, Nucleation of high-field domains in n-GaAs, Jpn. J. Appl Phys. 7(11), 1368–1380 (1968).

    Article  Google Scholar 

  64. H. W. Thim, Computer study of bulk GaAs devices with random and dimensional doping fluctuations, J. Appl. Phys. 39 (8), 3897–3904 (1968).

    Article  Google Scholar 

  65. J. B. Gunn, Effect of domain and circuit properties on oscillations in GaAs, IBM J. Res. Dev. 10 (4), 310–320 (1966).

    Article  Google Scholar 

  66. F. A. Myers, J. McStay, and B. C. Taylor, Variable length Gunn oscillator, Electron. Lett. 4 (18), 386–387 (1968).

    Article  Google Scholar 

  67. M. Suga and K. Sekido, Effects of doping profile upon electric characteristics of Gunn diodes, IEEE Trans. Electron Devices ED-17 (4), 275–281 (1970).

    Article  Google Scholar 

  68. M. P. Shaw, P. R. Solomon, and H. L. Grubin, The influence of boundary conditions on current instabilities in n-GaAs, IBM J. Res. Dev. 13 (5), 587–590 (1969).

    Article  Google Scholar 

  69. E. M. Conwell, Boundary conditions and high field domain in GaAs, IEEE Trans. Electron Devices ED-17 (4), 262–270 (1970).

    Article  Google Scholar 

  70. M. P. Shaw, P. R. Solomon, and H. L. Grubin, Circuit-controlled current instabilities in n-GaAs, Appl. Phys. Lett. 17 (12), 535–537 (1970).

    Article  Google Scholar 

  71. P. R. Solomon, M. P. Shaw, H. L. Grubin, and R. Kaul, An experimental study of the influence of boundary conditions on the Gunn effect, IEEE Trans. Electron Devices ED-22 (3), 127–139 (1975).

    Article  Google Scholar 

  72. R. Engelmann, Simplified model for the domain dynamics in Gunn effect semiconductors covered with dielectric sheets, Electron. Lett. 4 (24), 546–547 (1968).

    Article  Google Scholar 

  73. G. S. Kino and P. N. Robson, The effect of small transverse dimensions on the operation of Gunn devices, Proc. IEEE 56 (11), 2056–2057 (1968).

    Article  Google Scholar 

  74. H. L. Hartnagel, Gunn instabilities with surface loading, Electron Lett. 5 (14), 303–304 (1969).

    Article  Google Scholar 

  75. P. Gueret, Limits of validity of the 1-dimensional approach in space-charge-wave and Gunn-effect theories, Electron. Lett. 6 (7), 197–198 (1970).

    Article  Google Scholar 

  76. P. Gueret, Stabilization of Gunn oscillations in layered semiconductor structures, Electron. Lett. 6 (20), 637–638 (1970).

    Article  Google Scholar 

  77. M. Masuda, N. S. Chang, and Y. Matsuo, Suppression of Gunn-effect domain formation by ferrimagnetic materials, Electron. Lett. 6 (19), 605–606 (1970).

    Article  Google Scholar 

  78. S. Kataoka, H. Tateno, and M. Kawashima, Improvements in efficiency and tunability of Gunn oscillators by dielectric-surface loading, Electron. Lett. 5 (20), 491–492 (1969).

    Article  Google Scholar 

  79. P. Kozdon and P. N. Robson, Two-port amplifiers using the transferred electron effect in GaAs, in 8th Int. Conf. on Microwave and Optical Generation and Amplification (MOGA), Amsterdam, paper 16.2, 1970.

    Google Scholar 

  80. K. Kumabe, Suppression of Gunn oscillations by a two-dimensional effect, Proc. IEEE 56 (12), 2172–2173 (1968).

    Article  Google Scholar 

  81. M. E. Levinshtein, Influence of dielectric coatings on oscillation parameters of planar Gunn diodes, Sov. Phys. Semicond. 7 (10) 1347–1348 (1974).

    Google Scholar 

  82. K. R. Hoffman, Some aspects of Gunn oscillations in thin dielectric-loaded samples, Electron. Lett. 5 (11), 227–228 (1969).

    Article  Google Scholar 

  83. J. Kuru and Y. Tajima, Domain suppression in Gunn diodes, Proc. IEEE 57 (7), 1215–1216 (1969).

    Article  Google Scholar 

  84. M. T. Vlaardingerbroek, G. A. Acket, K. Hofmann, and P. M. Boers, Reduced build-up of domains in sheet-type gallium-arsenide Gunn oscillators, Phys. Lett. 28A (2), 97–99 (1968).

    Article  Google Scholar 

  85. H. L. Hartnagel, Gunn domains in bulk GaAs affected by surface conditions, Phys. Stat. Solidi (a) 7 (2), K99-K103 (1971).

    Article  Google Scholar 

  86. K. R. Freeman, C. Sozou, and H. L. Hartnagel, Two-dimensional Gunn-domain growth in bulk GaAs, Phys. Lett. 34A (2), 95–96 (1970).

    Google Scholar 

  87. M. Shoji, Theory of transverse extension of Gunn-domains, J. Appl. Phys. 11 (2), 774–778 (1970).

    Article  Google Scholar 

  88. J. S. Heeks, Some properties of the moving high-field domain in Gunn effect devices, IEEE Trans. ED-13 (1), 68–70 (1966).

    Article  Google Scholar 

  89. A. G. Chynoweth, W. L. Feldmann, and D. E. McCumber, Mechanism of the Gunn effect, Proc. Intern. Conf. Phys. Semicond., Kyoto, J. Phys. Soc. Jpn. 21 Suppl., 514–521 (1966).

    Google Scholar 

  90. P. D. Southgate, Recombination processes following impact ionization by high-field domains in gallium arsenide, J. Appl. Phys. 38 (12), 4589–4595 (1967).

    Article  Google Scholar 

  91. J. Owens and G. S. Kino, Experimental studies of Gunn domains and avalanching, J. Appl. Phys. 42 (12), 5019–5028 (1971).

    Article  Google Scholar 

  92. P. D. Southgate, H. J. Pager, and K. K. N. Chang, Modulation of infrared light by holes in pulse-ionized GaAs, J. Appl. Phys. 38 (6), 2689–2691 (1967).

    Article  Google Scholar 

  93. K. K. Chang, S. G. Liu, and H. J. Prager, Infrared radiation from bulk GaAs, Appl. Phys. Lett. 8, 196–198 (1966).

    Article  Google Scholar 

  94. S. G. Liu, Infrared and microwave radiations associated with a current controlled instabilities in GaAs, Appl. Phys. Lett. 9 (2), 79–81 (1966).

    Article  Google Scholar 

  95. J. A. Copeland, Switching and low-field breakdown in n-GaAs bulk diodes, Appl. Phys. Lett. 9 (4), 140–142 (1966).

    Article  MathSciNet  Google Scholar 

  96. M. R. Oliver, A. L. McWhorter, and A. G. Foyt, Current runaway and avalanche effects in CdTe, Appl. Phys. Lett. 11 (4), 111–113 (1967).

    Article  Google Scholar 

  97. P. D. Southgate, Stimulated emission from bulk field-ionized GaAs, IEEE J. Quantum Electron. QE-4 (4), 179–185 (1968).

    Article  Google Scholar 

  98. P. D. Southgate and R. T. Mazzochi, Stimulated emission in field-ionized bulk InP, Phys. Lett. 28A (3), 216–217 (1968).

    Article  Google Scholar 

  99. P. D. Southgate, Laser action in field-ionized bulk GaAs, Appl. Phys. Lett. 12 (3), 61–63 (1968).

    Article  Google Scholar 

  100. B. L. Gelmont and M. S. Shur, Current filamentation in high doped Gunn diodes, Sov. Phys. JETP Lett. 11 (7), 350–353 (1970).

    Google Scholar 

  101. B. L. Gelmont and M. S. Shur, Characteristic time of the coherency violation of Gunn oscillations, Sov. Phys. Semicond. 7 (1), 326–331 (1973).

    Google Scholar 

  102. B. L. Gelmont and M. S. Shur, 5-type current-voltage characteristics in Gunn diodes, J. Phys. D Appl. Phys. 6, 842–850 (1973).

    Article  Google Scholar 

  103. R. Hall and J. H. Leck, Avalanche break-down of gallium arsenide p-n junctions, Int. J. Electron. 25 (6), 529–537 (1968).

    Article  Google Scholar 

  104. B. L. Gelmont and M. S. Shur, S-type current-voltage characteristics in Gunn diodes with deep levels, Theory, Sov. Phys. Semicond. 7 (1), 50 (1973).

    Google Scholar 

  105. B. L. Gelmont and M. S. Shur, 5-type current-voltage characteristic in Gunn diodes with deep levels. Comparison of theory and experiment, Sov. Phys. Semicond. 7 (3), 377–379 (1973).

    Google Scholar 

  106. W. K. Kennedy, L. F. Eastman and R. J. Gilbert, LSA operation of large volume bulk GaAs samples, IEEE Trans. ED-14 (9), 500–504 (1967).

    Article  Google Scholar 

  107. E. D. Prokhorov and V. A. Shalaev, Influence of a magnetic field on carriers generated within a high field domain under impact ionization in a Gunn diode, Sov. Phys. Semicon. 4(10), 1707 (1970).

    Google Scholar 

  108. P. D. Southgate, Role of ionization inhomogeneities in the 5-type characteristic of moderately heavily doped n-GaAs, J. Appl. Phys. 43 (3), 1038–1041 (1972).

    Article  Google Scholar 

  109. B. L. Gelmont and M. S. Shur, Current filamentation in doped Gunn diodes, Sov. Phys. Semicond. 4 (9), 1419 (1970).

    Google Scholar 

  110. B. L. Gelmont and M. S. Shur, Motion of a current filament movement in a magnetic field under Gunn effect conditions, Sov. Phys. Semicond. 4 (9), 1540 (1970).

    Google Scholar 

  111. B. L. Gelmont and M. S. Shur, Current filament movement in transverse electric and magnetic fields, Sov. Phys. Semicond. 7 (10), 1311–1314 (1971).

    Google Scholar 

  112. Z. N. Chigogidze, N. P. Khuchua, L. M. Gutnic, P. G. Kharati, I. V. Varlamov, U. A. Bekirev and A.A. Tyutyun, Mechanism of failure of Gunn diodes Sov. Phys. Semicond. 6 (9), 1443 (1973).

    Google Scholar 

  113. Sh. G. Suleimanov, Effect of a magnetic field on the current instability in gallium arsenide, Sov. Phys. Semicond. 6 (1), 150 (1972).

    Google Scholar 

  114. B. L. Gelmont and M. S. Shur, 5-type current-voltage characteristic and recombination emission in Gunn diodes, Electron. Lett. 6 (16), 531–532 (1970).

    Article  Google Scholar 

  115. B. L. Gelmont and M. S. Shur, A quasineutral wave new instability in semiconductors with two kinds of carriers—Sov. Phys. Semicond. 5 (6), 955 (1971).

    Google Scholar 

  116. B. L. Gelmont and M. S. Shur, The instability of quasineutral waves in a semiconductor with two kinds of carriers, Phys. Lett. 35A (5), 353–354 (1971).

    Article  Google Scholar 

  117. R. A. Smith, Semiconductors, Cambridge Univ. Press, Cambridge (1959).

    MATH  Google Scholar 

  118. B. L. Gelmont and M. S. Shur, High field domains in Gunn diodes with two kinds of carriers, Sov. Phys. JETP 33 (6), 1234–1239 (1971).

    Google Scholar 

  119. B. L. Gelmont and M. S. Shur, High field Gunn domains in the presence of electron-hole pairs, Phys. Lett. 36A (4), 305–306 (1971).

    Article  Google Scholar 

  120. B. L. Gelmont and M. S. Shur, High field recombination domains in semiconductors with two types of carriers, Sov. Phys. JETP 34 (6), 1295 (1972).

    Google Scholar 

  121. B. Fay and G. S. Kino, Appl. Phys. Lett. 15, 337 (1969).

    Article  Google Scholar 

  122. V. L. Dalai, Hole velocity in p-GaAs, Appl. Phys. Lett. 16 (12), 489–491 (1970).

    Article  Google Scholar 

  123. P. A. Borodovskii and I. F. Rosentsvaig, Mobile high field domain in a sample of n-type InSb subjected to an external magnetic field, Sov. Phys. Semicond. 6 (12), 1972 (1973).

    Google Scholar 

  124. P. M. Boers, Measurements on dipole domains in indium phospide, Phys. Lett. 34A (6), 329–330 (1971).

    Article  Google Scholar 

  125. P. Guetin, Contribution to the experimental study of the Gunn effect in long GaAs samples, IEEE Trans. ED-14 (9), 552–562 (1967).

    Article  Google Scholar 

  126. B. L. Gelmont and M. S. Shur, Analytical theory of recombination domains, Sov. Phys. Semicond. 5(11), 1841 (1971).

    Google Scholar 

  127. B. L. Gelmont and M. S. Shur, An analytical theory of the high field domain in the presence of trapping, Phys. lett. 38A (7), 503–504 (1972).

    Article  Google Scholar 

  128. B. L. Gelmont and M. S. Shur, Slow high field domains in Gunn diodes with two kinds of carriers 7 (9), 1279–1286 (1974).

    Google Scholar 

  129. M. E. Levinshtein, D. N. Nasledov, and M. S. Shur, Magnetic field influence on the Gunn effect, Phys. Status Solidi 33 (2), 897–903 (1969).

    Article  Google Scholar 

  130. M. E. Levinshtein, T. V. Lvova, D. N. Nasledov, and M. S. Shur, Magnetic field influence on the Gunn effect II, Phys. Status Solidi (a) 1 (1), 177–187 (1970).

    Article  Google Scholar 

  131. T. R. Jervis and E. F. Johnson, Geometrical magnetoresistance and Hall mobility in Gunn effect devices, Solid State Electron. 13, 181–189 (1970).

    Article  Google Scholar 

  132. H. L. Hartnagel, G. P. Srivastava, P. C. Mathur, K. N. Trepathi, S. K. Lomash, and A. K. Dhall, The influence of transverse magnetic field on Gunn effect threshold, Phys. Lett. 49A (6), 463–465 (1974).

    Article  Google Scholar 

  133. A.D. Boardman, W. Fawcett, and J. G. Ruch, Monte Carlo determination of hot electron gal-vanomagnetic effects in gallium arsenide, Phys. Status Solidi (a) 4 (1), 133–141 (1971).

    Article  Google Scholar 

  134. W. Heinle, Influence of magnetic field on the Gunn effect characteristic of GaAs, Phys. Status Solidi 2 (1), 115–121 (1970).

    Article  Google Scholar 

  135. W. K. Kennedy, Variation of the Gunn effect by magnetic field, Proc. IEEE 1639–1640, October (1965).

    Google Scholar 

  136. M. S. Shur, Turnover of current-voltage characteristic in high magnetic field due to geometric magnetoresistance, Proc. of 13th International Conference on Physics of Semiconductors, pp. 1145–1148, Rome 1977.

    Google Scholar 

  137. M. S. Shur, Geometric magnetoresistance and negative differential mobility in semiconductor devices, Solid State Electron. 20, 389–401 (1977).

    Article  Google Scholar 

  138. V. B. Gorfinkel, M. E. Levinshtein, and D. V. Mashovets, Influence of a strong transverse magnetic field on the Gunn effect, Sov. Phys. Semicond. 13 (3), 331 (1979).

    Google Scholar 

  139. A. A. Grinberg and A. A. Kastalskii, Phys. Status Solidi, 26, 219 (1968).

    Article  Google Scholar 

  140. A. A. Kastalskii, Sov. Phys. Semicond. 2, 995 (1969).

    Google Scholar 

  141. N. A. Guschina and M. S. Shur, Sov. Phys. Semicond. 4, 922 (1970).

    Google Scholar 

  142. H. Hagakawa, R. Ishiguro, N. Mikoshiba, and M. Kikuchi, Appl. Phys. Lett. 14, 9 (1969).

    Article  Google Scholar 

  143. H. Hayakawa, T. Ishiguro, S. Takada, N. Mikoshiba, and M. Kikuchi, J. Appl. Phys. 41,4755 (1970).

    Article  Google Scholar 

  144. R. E. Lee and R. M. White, Appl. Phys. Lett. 16, 343 (1970).

    Article  Google Scholar 

  145. A. L. Kazakov and M. S. Shur, Sov. Phys.—Semicond. 3, 1047 (1970).

    Google Scholar 

  146. M. G. Cohen, S. Knight, and J. P. Elward, Appl. Phys. Lett. 8, 269 (1966).

    Article  Google Scholar 

  147. P. Guetin and D. Boccon-Gibod, Appl. Phys. Lett. 13, 161 (1968).

    Article  Google Scholar 

  148. P. D. Southgate, H. J. Prager, and K. K. N. Chang, J. Appl. Phys. 38, 2689 (1967).

    Article  Google Scholar 

  149. M. S. Shur, Phys. Lett. 29A, 490 (1969).

    Article  Google Scholar 

  150. W. H. Haydl and R. Solomon, The effect of illumination on Gunn oscillations in epitaxial GaAs, IEEE Trans. ED-15 (11), 941–942 (1968).

    Article  Google Scholar 

  151. K. G. Sewell and L. A. Boather, Multimode operation in GaAs oscillators induced by cooling and illumination, Proc. IEEE 55 (7), 1228–1229 (1967).

    Article  Google Scholar 

  152. R. F. Adams and H. J. Schulte, Optically triggered domains in GaAs Gunn diodes, Appl. Phys. Lett. 15 (8), 265–267 (1969).

    Article  Google Scholar 

  153. R. R. Riesz, Optical interaction with high field domain nucleation in GaAs, IEEE Trans. ED-17 (1), 81–83 (1970).

    Article  MathSciNet  Google Scholar 

  154. T. Igo et al, Regenerative light pulse detection using Gunn effect, Jpn J. Appl. Phys. 9 (10), 1283–1285 (1970).

    Article  Google Scholar 

  155. M. E. Levinshtein, Influence of the illumination on the parameters of Gunn diodes, Sov. Phys. Semicond. 7 (7), 832 (1973).

    Google Scholar 

  156. J. Xu and M. S. Shur, Velocity-Field Dependence in GaAs, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shur, M. (1987). Ridley-Watkins-Hilsum-Gunn Effect. In: GaAs Devices and Circuits. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1989-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1989-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1991-5

  • Online ISBN: 978-1-4899-1989-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics