Skip to main content

Part of the book series: Microdevices ((MDPF))

  • 410 Accesses

Abstract

Gallium is a rare element. It is produced as a by-product in Al or Zn production. The physical properties of this metal are described in Table 3–1–1. Standard purification processes make it possible to obtain Ga as pure as 99.99999%. Liquid Ga reacts with quartz at high temperatures leading to impurities in GaAs grown in quartz containers. Ga is considered to be toxic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. T. J. Hurle, Current Growth Techniques in Crystal Growth, A Tutorial Approach, North-Holland, Amsterdam, 1979.

    Google Scholar 

  2. F. P. Kesamanly and D. N. Nasledov, Eds., GaAs Growth, Properties, and Applications, Nauka, Moscow, 1973 (in Russian).

    Google Scholar 

  3. L. F. Eastman, Semi-insulating GaAs substrates for integrated circuit devices: promises and problems, J. Vac. Sci. Technol, 16, (6), 2050 (1979).

    Article  Google Scholar 

  4. C. O. Bozler, J. P. Donnelly, W. T. Lindley, and R. A. Reynolds, Appl. Phys. Lett. 29, 698 (1976).

    Article  Google Scholar 

  5. J. Van den Boomgaard and K. Schol, Phil. Res. Rep. 12, 127 (1957).

    Google Scholar 

  6. M. B. Panish, I. Hayashi, and S. Sumski, A technique for the preparation of low-threshold room-temperature GaAs laser diode structures, IEEE J. Quantum Electron. QE-5, 210–211 (1969).

    Article  Google Scholar 

  7. M. Nelson, Epitaxial growth from the liquid state and its applications to the fabrication of tunnel and laser diodes, RCA Rev. 24, 603–615 (1963).

    Google Scholar 

  8. H. Rupprecht, New aspects of solution regrowth in the device technology of gallium arsenide, Proc. 1966 Symp. on GaAs, Inst, of Physics and Physics Society of London, 1967, pp. 57–62.

    Google Scholar 

  9. G. B. Stringfellow, LPE of IIIJ V Semiconductors in Crystal Growth, A Tutorial Approach, North-Holland, Amsterdam, 1979.

    Google Scholar 

  10. T. N. Bhar and R. Dat, The effect of baking on the quality of GaAs LPE layers, Solid State Electron. 22, 743–744 (1979).

    Article  Google Scholar 

  11. H. F. Lockwood and M. Ettenberg, Thin solution multiple layer epitaxy, J. Cryst. Growth 15, 81–83 (1972).

    Article  Google Scholar 

  12. J. J. Hsieh, Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium cooling, and two phase solution technology, J. Cryst. Growth 27, 49–61 (1974).

    Google Scholar 

  13. I. Crossley and M. B. Small, Computer simulations of liquid phase epitaxy of GaAs in Ga solution, J. Crystal Growth 11, 157–165 (1971).

    Article  Google Scholar 

  14. F. E. Rosztoczy, S. I. Long, and J. Kinoshita, J. Crystal Growth 32, 95–100 (1976).

    Article  Google Scholar 

  15. H. M. Manaserit and W. I. Simpson, J. Electrochem. Soc. 116, 1725 (1969).

    Article  Google Scholar 

  16. H. Beneking, A. Escobosa, and H. Krautle, presented at the Electron Material Conference, Cornell University, Ithaca, New York, 1980.

    Google Scholar 

  17. C. C Wang and S. M. MacFarlane III, Thin Solid Films 31, 3 (1976).

    Article  Google Scholar 

  18. P. Balk and E. Venhoff, Deposition of III-V compounds by MO-CVD and in halogen transport systems, A critical comparison, J. Crystal Growth 55, (1), 35–41 (1981).

    Article  Google Scholar 

  19. H. M. Manasevit, Recollections and reflection of MO-CVD, J. Crystal Growth 55, (1), 1–9 (1981).

    Article  Google Scholar 

  20. C. Y. Chang, Y. K. Su, M. K. Lee, L. G. Chen, and M. P. Houng, Characterization of GaAs epitaxial layers by low pressure MO VPE using TEG as Ga source, J. Crystal Growth 55, (1), 24–29 (1981).

    Article  Google Scholar 

  21. G. B. Stringfellow, J. Appl. Phys. 50, 4178 (1979).

    Article  Google Scholar 

  22. T. J. Drummond, H. Morkoc, and A. Y. Cho, Dependence of electron mobility on spatial separation of electrons and donors in AlxGa1-xAsJGaAs heterostructures, J. Appl. Phys. 52(3), 1380–1386 (1981).

    Article  Google Scholar 

  23. M. G. Panish and A. Y. Cho, Molecular beam epitaxy, Spectrum 17(4), 18 (1980).

    Google Scholar 

  24. R. Stall, C. E. C. Wood, K. Board, and L. F. Eastman, Ultra low resistance ohmic contacts to n-GaAs, Electron. Lett. 15, 800–801 (1979).

    Article  Google Scholar 

  25. C. E. C. Wood, Progress, problems, and applications of molecular beam epitaxy, in Physics of Thin Films, Ed. by G. Hass and M. Francone, Academic, New York, 1981.

    Google Scholar 

  26. A. R. Calawa, On the use of AsH3 in the molecular beam epitaxial growth of GaAs, Appl. Phys. Lett. 38(9), 701–703 (1981).

    Article  Google Scholar 

  27. J. C. Bean, Proc. Int. Electron Device Meeting, Washington, DC, 1981, p. 6.

    Google Scholar 

  28. A. Y. Cho and J. R. Arthur, Progress in Solid State Chemistry, Ed. by G. Somorjai and J. McCaldin, Pergamon, New York, 1975, Vol. 10, p. 157.

    Google Scholar 

  29. A. Y. Cho, Recent developments in molecular beam epitaxy (MBE), J. Vac. Sci. Technol. 16, 275 (1979).

    Article  Google Scholar 

  30. J. N. Walpole, A. R. Calawa, S. R. Chinn, S. H. Groves, and T. C Harman, Appl. Phys. Lett. 29, 307 (1976).

    Article  Google Scholar 

  31. K. Ploog, Molecular beam epitaxy of III-V compounds, in Crystals—Growth, Properties, and Applications, Ed. by L. F. Boschke, Springer-Verlag, Heidelberg, 1979.

    Google Scholar 

  32. C. E. C Wood, in Technology and Physics of MBE, Ed. by E. H. C Parker and M. G. Dowsett, Plenum, New York, 1982.

    Google Scholar 

  33. C. E. C. Wood, III-V Alloy growth by MBE, in GalnAsP Alloy Semiconductors, Wiley, New York, 1982.

    Google Scholar 

  34. Lester F. Eastman, Use of molecular beam epitaxy in research and development of selected high speed compound semiconductor devices, J. Vac. Sci. Technol. B 1(2), 131 (1983).

    Article  Google Scholar 

  35. C. E. C. Wood, MBE doping processes, A review of current understanding, in proceedings of MBE-CST-2 (Second International Symp. on MBE Related Clear Surface Technol.) 27–30 August 1982, Tokyo, Japan.

    Google Scholar 

  36. D. L. Smith and V. Y. Pickardt, J. Appl. Phys. 46, 2366 (1975).

    Article  Google Scholar 

  37. T. Yao, S. Amano, Y. Makwa, and S. Maekawa, Jpn. J. Appl. Phys. 16, 369 (1977).

    Article  Google Scholar 

  38. H. Holloway and J. N. Walpole, MBE techniques for II-VI optoelectronic devices, in Molecular Beam Epitaxy, Ed. by B. R. Pamplin, Pergamon, Oxford, England, 1980, pp. 49–94.

    Google Scholar 

  39. J. P. Faune and A. Million, J. Crystal Growth 54, 577 (1981) and 54, 582 (1981).

    Article  Google Scholar 

  40. G. D. Holah, E. L. Meeks, and F. L. Eisele, Molecular beam epitaxial growth of InGaAsP, J. Vac. Sci. Technol. B. 1(2), 182–183 (1983).

    Article  Google Scholar 

  41. D. F. Welch, G. W. Wicks, D. W. Woodward, and L. F. Eastman, GalnAs-AlInAs heterostructures for optical devices grown by MBE, J. Vac. Sci. Technol. B 1(2), 202–204 (1983).

    Article  Google Scholar 

  42. U. Mishra, E. Kohn, N. J. Kawai, and L. F. Eastman, Permeable base transistor—A new technology, IEEE Trans Electron Devices. ED-29(10), 1707, Oct. (1982).

    Article  Google Scholar 

  43. J. S. Hammis and J. M. Woodcock, Electron. Lett. 16, 319 (1980).

    Article  Google Scholar 

  44. A. Y. Cho, H. C Casey, and P. W. Foy, Appl. Phys. Lett. 30, 397 (1977).

    Article  Google Scholar 

  45. P. M. Petroff, Weisbush, et al., Proc. 2nd Int. MBE Workshop, Cornell Univ. 1980.

    Google Scholar 

  46. W. T. Tsang and J. A. Ditzenberger, A visible (AlGa)As heterostructure laser grown by molecular beam epitaxy, Appl. Phys. Lett. 39, 193 (1981).

    Article  Google Scholar 

  47. W. I. Wang, S. Judaprawira, C. E. C Wood, and L. F. Eastman, Appl. Phys. Lett. 38, 708 (1981).

    Article  Google Scholar 

  48. A. Y. Cho, J. V. DiLorenzo, B. S. Hewitt, W. C Niehaus, W. Schlosser, and C. Radice, J. Appl. Phys. 48, 336 (1977).

    Article  Google Scholar 

  49. S. G. Bandy, D. M. Collins, and C. K. Nishimoto, Electron. Lett. 15, 218 (1979).

    Article  Google Scholar 

  50. C. E. C Wood, D. DeSimone, and S. Judaprawira, J. Appl. Phys. 51, 2074 (1980).

    Article  Google Scholar 

  51. R. E. Thorne, S. L. Su, R. J. Fisher, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkoc, Analysis of Camel gate FETs (CAMFETs), IEEE Trans. Electron Devices. ED-30(3), 212–217 (1983).

    Article  Google Scholar 

  52. S. Hiyamizu, T. Minura, and T. Ishikawa, Jpn. J. Appl. Phys. 21, Suppl. 21–1, 161 (1982).

    Google Scholar 

  53. H. Morkoc, Modulation Doped Al x Ga 1-x As/GaAs Field Effect Transistors (MODFETs): Analysis, Fabrication, and Performance, Nijhoff, The Hague, 1983.

    Google Scholar 

  54. W. V. McLevice, H. T. Yuan, W. M. Duncan, W. R. Frensley, F. H. Doerbeck, and H. Morkoc, IEEE Electron Device Lett. EDL-3(2), 43–45 (1982).

    Article  Google Scholar 

  55. R. J. Malik, T. R. AuCoin, R. L. Ross, K. Board, C. E. C Wood, and L. F. Eastman, Electron. Lett. 16, 836 (1980).

    Article  Google Scholar 

  56. R. J. Malik, K. Board, L. F. Eastman, T. R. AuCoin, and R. Ross, Inst. Phys. Conf. Ser. 56, 697 (1981).

    Google Scholar 

  57. W. Haydl, R. Smith, and R. Bosch, Appl. Phys. Lett. 37, 556 (1980).

    Article  Google Scholar 

  58. S. Pham, N. Tung, P. Delecluse, D. Delagebeaudeuf, M. Laviron, J. Chaplart, and N. T. Linh, High speed low power DCFL using planar two-dimensional electron gas FET technology, Electron. Lett. 18(12), 517–518 (1982).

    Article  Google Scholar 

  59. D. L. Miller and J. S. Harris, Appl. Phys. Lett. 37, 1104 (1980).

    Article  Google Scholar 

  60. Ivor Vrodie and Julius J. Muray, The Physics of Microfabrication, Plenum, New York, 1982.

    Google Scholar 

  61. A. H. Agajanian, Semiconducting Devices, A Biblography of Fabrication Technology, Properties, and Applications, Plenum, New York, 1976.

    Google Scholar 

  62. Method F l00–72, Standard Test Method for Thickness of Epitaxial or Diffused Layers in Silicon by the Angle Lapping and Staining Technique, American Society for Testing and Material Standards, 1976.

    Google Scholar 

  63. Method F 95–76, Standard Test Method for Thickness of Epitaxial or Diffused Layers in Silicon on Substrates of the Same Type by Infrared Reflection, American Society for Testing and Material Standards, 1976.

    Google Scholar 

  64. J. D. Wiley, C-V profiling of GaAs FET films, IEEE Trans. Electron Devices ED-25, 1317–1324 (1978).

    Article  Google Scholar 

  65. L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  66. L. J. van der Pauw, Philips Tech. Rep. 20, 220 (1958).

    Google Scholar 

  67. H. H. Wieder, Electrical and galvanomagnetic measurements on thin films and epilayers, Thin Solid Films 31, 123–138 (1976).

    Article  Google Scholar 

  68. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.

    Google Scholar 

  69. D. V. Lang, J. Appl. Phys. 45(7), 3023 (1974).

    Article  Google Scholar 

  70. J. S. Blakemore, Semiconductor Statistics, Pergamon, New York, 1962, p. 277.

    MATH  Google Scholar 

  71. E. H. Rhoderick, Transport properties in Schottky diodes, in Inst. Phys. Conf. Ser., No. 22, Ed. by K. M. Pepper, Institute of Physics, Manchester, England, 1974, p. 3.

    Google Scholar 

  72. E. E. Wagner, D. Hiller, and D. E. Mars, Rev. Sci Instrum. 51(9), 1205 (1980).

    Article  Google Scholar 

  73. G. L. Miller, D. V. Lang, and L. C. Kimerling, Ann. Rev. Mater. Sci 7, 377–448 (1977).

    Article  Google Scholar 

  74. R. S. Müller and T. I. Kamins, Device Electronics for IC’s, Wiley, New York, 1977, p. 316.

    Google Scholar 

  75. K. Yamasaki, M. Yoshida, and T. Sugano, Jpn. J. Appl. Phys. 18(1), 113 (1979).

    Article  Google Scholar 

  76. T. R. Ohnstein, Ph.D. thesis., University of Minnesota, 1982.

    Google Scholar 

  77. P. D. Kirchner, W. J. Schaff, G. N. Maracas, and L. F. Eastman, The analysis of exponential and non-exponential transients in deep level transient spectroscopy, J. Appl. Phys. 52(11), 6462–6470 (1981).

    Article  Google Scholar 

  78. D. V. Lang, A. Y. Cho, A. C. Gossard, M. Ilegems, and W. Wiegman, Study of electron traps in n-GaAs grown by molecular beam epitaxy, J. Appl. Phys. 47(6), 2558–2564 (1976).

    Article  Google Scholar 

  79. R. E. Honig, Surface and thin film analysis of semiconductor materials, Thin Solid Films 31, 89–122 (1976).

    Article  Google Scholar 

  80. D. C Northrop and E. H. Rhoderick, The physics of Schottky barriers, in Variable Impedance Devices, Ed. by M. J. Howes and D. V. Morgan, Wiley, New York, 1978.

    Google Scholar 

  81. B. L. Smith and E. H. Rhoderick, Solid State Electron. 14, 71 (1971).

    Article  Google Scholar 

  82. G. B. Seiranyan and Y. A. Thorik, Phys. Status Solidi A13, K115 (1972).

    Article  Google Scholar 

  83. C. R. Crowell and S. M. Sze, Solid State Electron. 9, 1035 (1966).

    Article  Google Scholar 

  84. A. Padovani and R. Stratton, Solid State Electron. 9, 695 (1966).

    Article  Google Scholar 

  85. C. R. Crowell and V. L. Rideout, Solid State Electron. 12, 89 (1969).

    Article  Google Scholar 

  86. L. S. Weinman, S. A. Jamison, and M. J. Helix, Sputtered TiWJAu Schottky barriers on GaAs, J. Vac. Sci Technol. 18(3), 838–840 (1981).

    Article  Google Scholar 

  87. E. H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford, 1978.

    Google Scholar 

  88. B. L. Sharma and S. C Gupta, Metal-Semiconductor barrier junctions, Solid State Technol. 23, 90–95 (1980).

    Article  Google Scholar 

  89. G. Y. Robinson, Schottky diodes and ohmic contacts for the HI-V semiconductors, in Physics and Chemistry of HI-V Semiconductor Interfaces, Ed. by C. W. Wilmsen, Plenum, New York, 1983.

    Google Scholar 

  90. N. Braslau, Alloyed Ohmic contacts to GaAs, J. Vac. Sci Technol. 19(3), 803 (1981).

    Article  Google Scholar 

  91. L. L. Chang and G. L. Pearson, The solubilities and distribution coefficients of Zn in GaAs and GaP, Phys. Chem. Solids 25, 23–30 (1964).

    Article  Google Scholar 

  92. R. Stall, C. E. C. Wood, K. Board, N. Dandekar, L. F. Eastman, and J. Devlin, A study of GeJGaAs interface grown by molecular beam epitaxy, J. Appl. Phys 52, 4062–4069 (1981).

    Article  Google Scholar 

  93. J. M. Woodall, J. L. Freeouf, G. D. Pettit, T. Jackson, and P. Kirshner, Ohmic contacts to n-type GaAs using graded band gap layers of GaxIn1-xAs grown by molecular beam epitaxy, J. Vac. Sci Technol. 19, 626–627 (1981).

    Article  Google Scholar 

  94. N. Braslau, J. B. Gunn, and J. L. Staples, Metal-semiconductor contacts for GaAs bulk effect devices, Solid-State Electron. 10, 381–383 (1967).

    Article  Google Scholar 

  95. R. H. Cox and H. Strack, Solid-State Electron. 10, 1213 (1967).

    Article  Google Scholar 

  96. D. C Miller, J. Electrochem. Soc. 127, 467 (1980).

    Article  Google Scholar 

  97. A. Christou, Solid-State Electron. 22, 141 (1979).

    Article  Google Scholar 

  98. C. P. Lee, B. M. Welch, and W. P. Fleming. Reliability of AuGeJPt and AuGeJNi ohmic contacts on GaAs, Electron. Lett. 12, 406–407 (1981).

    Google Scholar 

  99. M. Heiblum, M. I. Nathan, and C. A. Chang, Sol. State Electron. 25, 185 (1982).

    Article  Google Scholar 

  100. R. P. Gupta and J. Freyer, Int. J. Electron. 47, 459 (1979).

    Article  Google Scholar 

  101. K. Heime, U. Konig, E. Kohn, and A. Wortmann, Sol. State Electron. 17, 835 (1974).

    Article  Google Scholar 

  102. F. Vidimari, Electron. Lett. 15, 675 (1979).

    Article  Google Scholar 

  103. N. Yokoyama, S. Ohkawa, and H. Ishikawa, Jpn. J. Appl. Phys. 14, 1071 (1975).

    Article  Google Scholar 

  104. G. Eckhardt, Laser and Electron Beam Processing of Materials, Ed. by C. W. White and P. S. Peercy, Academic, New York, 1980, p. 467.

    Book  Google Scholar 

  105. G. Badertscher, R. P. Salathe, and W. Luthy, Electron. Lett. 16, 113 (1980).

    Article  Google Scholar 

  106. J. G. Werthen and D. R. Scifres, J. Appl. Phys. 52, 1127 (1981).

    Article  Google Scholar 

  107. R. L. Mozzi, W. Fabian, and I. J. Piekarski, Appl. Phys. Lett. 35, 337 (1979).

    Article  Google Scholar 

  108. Y. I. Nissim, J. F. Gibbons, and R. B. Gold, IEEE Trans. Electron Devices ED-28, 607 (1981).

    Article  Google Scholar 

  109. K. Klohn and Z. Wandinger, J. Electrochem. Soc. 116, 507 (1969).

    Article  Google Scholar 

  110. H. Matino and M. Tokunaga, J. Electrochem. Soc. 116, 709 (1969).

    Article  Google Scholar 

  111. Y. A. Goldberg and B. V. Tsarenkev, Soc. Phys. Semicond. 3, 551 (1970).

    Google Scholar 

  112. W. D. Edwards, W. A. Hartman, and A. B. Torrens, Solid-State Electron. 15, 387 (1972).

    Article  Google Scholar 

  113. S. Asai et al., Proc. 5th Conf. on Solid State Devices, Tokyo, p. 442, 1973.

    Google Scholar 

  114. G. Y. Robinson, Solid State Electron 18, 331 (1975).

    Article  Google Scholar 

  115. H. R. Grinolds and G. Y. Robinson, Solid-State Electron. 23, 973 (1980).

    Article  Google Scholar 

  116. A. H. Oraby, K. Murakami, Y. Yuba, K. Gamo, S. Namba, and Y. Masuda, Appl. Phys. Lett. 38, 562 (1981).

    Article  Google Scholar 

  117. M. Ogawa, K. Ohata, T. Furutsuka, and N. Kawamura, IEEE Trans. Micr. Theory Tech, MTT-24, 300 (1976).

    Article  Google Scholar 

  118. R. B. Gold, R. A. Powell, and J. F. Gibbons, Laser-Solid Intersections and Laser Processes, AIP Conf. Proc. No. 50, New York, 1978, p. 635.

    Google Scholar 

  119. S. Margalit, D. Febete, D. M. Pepper, G. P. Leed, and A. Yariv, Appl. Phys. Lett. 33, 346 (1978).

    Article  Google Scholar 

  120. T. Inada, S. Kato, T. Hara, and N. Toyada, J. Appl. Phys. 50, 4466 (1979).

    Article  Google Scholar 

  121. W. T. Anderson, Jr., A. Christou, and J. F. Giuliani, IEEE Electron Device Lett. EDL-2,115 (1981).

    Article  Google Scholar 

  122. W. Tseng, A. Christou, H. Day, J. Davey, and B. Wilkins, J. Vac. Sci Technol. 19, 623 (1981).

    Article  Google Scholar 

  123. E. Kuphal, Solid-State Electron. 24, 69 (1981).

    Article  Google Scholar 

  124. H. Temkin, R. J. McCoy, V. G. Keramidas, and W. A. Bonner, Appl Phys. Lett. 36, 444 (1980).

    Article  Google Scholar 

  125. S. H. Wemple and W. C Niehaus, Inst. Phys. Conf. Ser. 33b, 262 (1977).

    Google Scholar 

  126. K. Ohata, T. Nozaki, and N. Kawamura, IEEE Trans. Electron Devices, ED-24, 1129 (1978).

    Article  Google Scholar 

  127. M. Ogawa, J. Appl. Phys. 51, 406 (1980).

    Article  Google Scholar 

  128. K. Ohata and M. Ogawa, Proc. 12th Annual Reliability Physics Symposium, IEEE, New York, 1974, p. 278.

    Book  Google Scholar 

  129. M. Yoder, Solid State Electron. 23, 117 (1980).

    Article  Google Scholar 

  130. M.’S. Shur, Resistance of alloyed ohmic contacts to GaAs, unpublished.

    Google Scholar 

  131. N. Braslau, presented at GaAs Research Seminar, Department of Electrical Engineering, University of Minnesota, 1981, unpublished.

    Google Scholar 

  132. H. J. Gohen and A. Y. C Yu, Ohmic contacts to epitaxial p-GaAs, Solid-State Electron. 14, 515–517 (1971).

    Article  Google Scholar 

  133. T. Sanada and O. Wada, Ohmic Contacts to p-GaAs with AuJZnJAu structure, Jpn. J. Appl. Phys. 19, L491-L494 (1980)

    Article  Google Scholar 

  134. H. Matino and M. Tokunaga, Contact resistance of several metals and alloys to GaAs, J. Electrochem. Soc. 116,709–711 (1979).

    Article  Google Scholar 

  135. V. L. Rediout, A review of the theory and technology for ohmic contacts to group III-V compound semiconductors, Solid-State Electron. 18, 541–550 (1975).

    Article  Google Scholar 

  136. Y. Nakato, S. Takahashi, and Y. Toyoshima, Contact resistance dependence on InGaAsP layers lattice matched to InP, Jpn. J. Appl. Phys. 19, L495-L497 (1980).

    Article  Google Scholar 

  137. W. Kellner, Planar ohmic contacts to n-type GaAs: Determination of contact parameters using the transmission line model, Siemens Forsch. Entwickl-Ber 4, 137 (1975).

    Google Scholar 

  138. I. F. Chang, Contact resistance in diffused resistors, J. Electrochem. Soc. 117, 368 (1970).

    Article  Google Scholar 

  139. G. K. Reeves and H. B. Harrison, Obtaining the specific contact resistance from transmission line model measurements, IEEE Electron Device Lett. EDL-3(5), 111–113 (1982).

    Article  Google Scholar 

  140. W. Schockley, Research and investigation of inverse epitaxial UHF power transistors, Report No. Al-TOR-64–207, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, Ohio, September 1964.

    Google Scholar 

  141. H. Murrmann and D. Widman, Current crowding on metal contacts to planar devices, IEEE Trans. Electron Devices ED-16, 1022–1024 (1969).

    Article  Google Scholar 

  142. H. H. Berger, Contact resistance on diffused resistors, IEEE ISSCC Digest of Tech. Papers, pp. 160–161, 1969.

    Google Scholar 

  143. H. H. Berger, Contact resistance and contact resistivity, J. Electrochem. Soc. 119, 509 (1972).

    Article  Google Scholar 

  144. H. H. Berger, Models for contacts to planar devices, Solid State Electron. 15, 145 (1972).

    Article  Google Scholar 

  145. R. D. Brooks and H. G. Mathes, Spreading resistance between constant potential surface, Bell System Tech. J. 50, 775–784 (1971).

    Google Scholar 

  146. L. E. Terry and R. W. Wilson, Metallization systems for Si integrated circuits, Proc. IEEE 57, 1580–1586 (1969).

    Article  Google Scholar 

  147. E. Kuphal, Low resistance ohmic contacts to n- and p-InP, Solid-State Electron 24, 69–78 (1981).

    Article  Google Scholar 

  148. Y. K. Fang, C. Y. Chang, and Y. K. Su, Contact resistance in metal-semiconductor systems, Solid-State Electron. 22, 933–938 (1979).

    Article  Google Scholar 

  149. D. V. Morgan, F. H. Eisen, and A. Ezis, Prospects for ion bombardment and ion implantation in GaAs and Inp device fabrication, IEE Proc. 128(4), 109–130 (1981).

    Google Scholar 

  150. R. C. Eden and B. M. Welsh, GaAs digital integrated circuits for ultra high speed LSI/VLSI, in Very Large Scale Integration (VLSI): Fundamentals and applications, Ed. by D. F. Barbe, Springer-Verlag, Berlin, 1980, pp. 128–177.

    Chapter  Google Scholar 

  151. F. Eisen, C. Kirpartrick, and P. Asbeck, Implantation into GaAs, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Artech House, Dedham, Massachusetts, 1982, pp. 117–146.

    Google Scholar 

  152. J. F. Gibbons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics. Semiconductors and Related Materials, 2nd Edition, Wiley, New York (1975).

    Google Scholar 

  153. J. Lindhard, M. Scharff, and M. E. Schiot, Range concepts and heavy ion ranges, K. Dan. Vidensk. Seisk. Mat.-Fys. Medd, 33(14), 1–42 (1963).

    Google Scholar 

  154. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, K. Dan. Vidensk. Seisk. Mat.-Fys. Medd. 34(14), 64 (1965).

    Google Scholar 

  155. J. P. Donnelly, W. T. Lindley, and C. E. Hurwitz, Silicon and selenium ion implanted GaAs reproducibly annealed at temperatures up to 950°C, Appl. Phys. Lett. 27, 41–43 (1975).

    Article  Google Scholar 

  156. F. H. Eisen, B. M. Welsh, H. Muller, K. Camo, T. Inado, and J. W. Mayer, Tellurium implantation in GaAs, Solid-State Electron. 20, 219–223 (1977).

    Article  Google Scholar 

  157. R. D. Pashify and B. M. Welsh, Tellurium implantation in GaAs, Solid-State Electron. 18, 977–981 (1975).

    Article  Google Scholar 

  158. A. A. Immorlica and F. H. Eisen, Capless annealing of ion-implanted GaAs, Appl. Phys. Lett. 29, 94–95 (1976).

    Article  Google Scholar 

  159. R. M. Malbon, D. H. Lee, and J. M. Whelan, Annealing of ion-implanted GaAs in a controlled atmosphere, J. Electrochem. Soc. 123, 1413–1415 (1976).

    Article  Google Scholar 

  160. J. Kasahara, M. Arai, and N. Watanabe, Capless anneal of ion-implanted GaAs in controlled arsenic vapor, J. Appl. Phys. 50, 541–543 (1979).

    Article  Google Scholar 

  161. M. Kuzuhara, H. Kohzu, and Y. Takayama, Infrared rapid thermal annealing of Si-implanted GaAs, Appl. Phys. Lett, 41(8), 755 (1982).

    Article  Google Scholar 

  162. B. J. Sealy, S. S. Kular, K. G. Stephens, R. Croft, and A. Palmer, Electrical properties of laser-annealed donor-implanted GaAs, Electron. Lett. 14(22), 720–721 (1978).

    Article  Google Scholar 

  163. S. S. Kular, B. J. Sealy, K. G. Stephens, D. R. Chick, Q. V. Davis, and J. Edwards, Pulsed laser-annealing of zinc implanted GaAs, Electron. Lett. 14(4), 85–87 (1978).

    Article  Google Scholar 

  164. B. K. Sinh and Y. S. Park, An abrupt dopant-profile in GaAs produced by Te implantation, J. Electrochem. Soc. 123, 1588–1589 (1976).

    Article  Google Scholar 

  165. J. P. Donnelly, Ion implantation in GaAs, Inst. Phys. Conf. Ser. 33b, 166–190 (1977).

    Google Scholar 

  166. J. M. Woodcock, J. M. Shannon, and D. J. Clark, Electrical and cathodoluminescence measurements on ion implanted donor layers in GaAs, Solid-State Electron. 18, 267–275 (1975).

    Article  Google Scholar 

  167. R. G. Hunsprerger and O. J. Marsh, Electrical properties of Cd, Zn, and S ion-implanted layers in GaAs, Radiat. Eff. 6, 263–268 (1970).

    Article  Google Scholar 

  168. J. A. Golovchenko and T. N. C. Venkatesan, Annealing of Te-implanted GaAs by ruby laser irradiation, Appl. Phys. Lett. 32, 147–149 (1978).

    Article  Google Scholar 

  169. S. U. Campisano, I. Catalano, G. Foti, E. Rimini, F. Eisen, and M. A. Nicolet, Laser reordering of implanted amorphous layers in GaAs, Solid-State Electron. 21, 485–488 (1978).

    Article  Google Scholar 

  170. E. Rimini, P. Baeri, and G. Foti, Laser pulse energy dependence of annealing in ion implanted Si and GaAs semiconductors, Phys. Lett. A 65, 153–155 (1978).

    Article  Google Scholar 

  171. J. L. Tandon, M. A. Nicolet, W. F. Tseng, F. H. Eisen, S. U. Campisano, G. Foti, and E. Rimini, Pulsed laser annealing of implanted layers in GaAs, Appl. Phys. Lett. 34, 597–599 (1979).

    Article  Google Scholar 

  172. S. U. Campisano, G. Foti, E. Rimini, F. Eisen, W. F. Tseng, M. A. Nicolet, and J. L. Tandon, Laser pulse annealing of ion-implanted GaAs, J. Appl. Phys. 51, 295–298 (1980).

    Article  Google Scholar 

  173. I. Inada, K. Tokunaga, and S. Taka, Pulsed electron-beam annealing of selenium implanted gallium arsenide, Appl. Phys. Lett. 35, 546–548 (1979).

    Article  Google Scholar 

  174. R. L. Mozzi, W. Fabian, and F. J. Piekarski, Non-alloyed ohmic contacts to n-GaAs by pulse-electron-beam-annealed selenium implants, Appl. Phys. Lett. 35, 337–339 (1979).

    Article  Google Scholar 

  175. R. G. Hunsperger, R. G. Wilson, and D. M. Jamba, Mg and Be ion implanted GaAs, J. Appl. Phys. 43, 1318–1320 (1972).

    Article  Google Scholar 

  176. M. A. Littlejohn, J. R. Hauser, and L. K. Monteith, The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide, Radiat. Effects 10, 185–190 (1971).

    Article  Google Scholar 

  177. Y. Yuba, K. Gamo, K. Masuda, and S. Namba, Hall effect measurements of Zn implanted GaAs, Jpn. J. Appl. Phys. 13, 641–644 (1974).

    Article  Google Scholar 

  178. R. Heckingbottom and T. Ambridge, Ion implantation in compound semiconductors—An approach based on solid state theory, Radiat. Effects 17, 31–36 (1973).

    Article  Google Scholar 

  179. T. Ambridge, R. Heckingbottom, E. C. Bell, B. J. Sealy, K. G. Stephens, and R. K. Surridge, Effect of dual implants into GaAs, Electron. Lett. 11(15), 314–315 (1975).

    Article  Google Scholar 

  180. B. J. Sealy, E. C Bell, R. K. Surridge, K. G. Stephens, T. Ambridge, and R. Heckingbottom, Dual implantation into GaAs, Inst. Phys. Conf. Ser. 28, 75–80 (1976).

    Google Scholar 

  181. P. F. Linquist and W. M. Ford, Semi-insulating GaAs Substrates, in Very Large Scale Integration (VLSI): Fundamentals and Applications, Ed. by D. F. Barbe, Springer-Verlag, Berlin, 1980, pp. 1–60.

    Google Scholar 

  182. J. D. Shpeight, P. Leigh, N. McIntyre, I. G. Grove, S. O’Hara, and P. L. F. Hemment, High efficiency proton-isolated GaAs IMPATT diodes, Electron. Lett. 10(7), 98–99 (1974).

    Article  Google Scholar 

  183. J. C. Dyment, L. A. D’Asaro, J. C. North, B. I. Miller, and J. F. Ripper, Proton bombardment formation of stripe geometry heterostructure lasers for 300 K cw operation, Proc. IEEE 60, 726 (1972).

    Article  Google Scholar 

  184. H. Stoll, A. Yariv, R. G. Hunsperger, and G. L. Tangonan, Proton implanted optical waveguides detectors in GaAs, Appl. Phys. Lett. 23, 664–665 (1973).

    Article  Google Scholar 

  185. D. C. D’Avanzo, Proton isolation for GaAs integrated circuits, IEEE Trans. Electron Devices ED-29(7), 1051–1059 (1983).

    Google Scholar 

  186. P. N. Favennec, Semi-insulating layers of GaAs by oxygen implantation, J. Appl. Phys. 47, 2532–2536 (1976).

    Article  Google Scholar 

  187. S. Gecim, B. J. Sealy, and K. G. Stephens, Carrier removal profiles from oxygen implanted GaAs, Electron. Lett. 14(10), 306–308 (1978).

    Article  Google Scholar 

  188. K. Gamo, T. Inada, S. Krekfler, J. W. Meyer, F. H. Eisen, and B. M. Welsh, Selenium implantation in GaAs, Solid-State Electron. 20, 213–217 (1977).

    Article  Google Scholar 

  189. F. H. Eisen, B. M. Welsh, K. Gamo, T. Inada, H. Mueller, M. A. Nicolet, and J. W. Maeyr, Sulphur, selenium, and tellurium implantation in GaAs, Inst. Phys. Conf. Ser. 28, 64–68 (1976).

    Google Scholar 

  190. R. G. Hunsperger and N. Hirsch, Electron. Lett. 9, 1 (1973).

    Article  Google Scholar 

  191. K. Ohata, T. Nosaki, and N. Kawamura, IEEE Trans. Electron Devices ED-24, 1129 (1977).

    Article  Google Scholar 

  192. J. A. Higgins, R. A. Kuvas, F. H. Eisen, and D. R. Ch’en, IEEE Trans. Electron Devices ED-25, 587 (1978).

    Article  Google Scholar 

  193. F. H. Dorbeck, H. M. Macksey, G. Brehm, and W. R. Frensley, Electron. Lett. 15, 577 (1979).

    Google Scholar 

  194. R. C Eden and B. M. Welsh, Planar localized fabrication process for fabricating GaAs SDFL, LSI and VLSI circuits, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Artech House, Dedham, Massachusetts, 1982, pp. 669–721.

    Google Scholar 

  195. K. Lehovec and R. Zuleeg, Direct coupled FET logic (DCFL), in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Artech House, Dedham, Massachusetts, 1982, pp. 621–668.

    Google Scholar 

  196. D. Wilson and D. H. Phillips, Enhancement/depletion GaAs FET logic, in GaAs FET Principles and Technology, Ed. by J. V. DiLorenzo and D. D. Khandelwal, Artech House, Dedham, Massachussetts, 1982, pp. 591–597.

    Google Scholar 

  197. K. Yamasaki, K. Asai and K. Kurumada, GaAs LSI-directed MESFETs with self-aligned implantation for n+-layer technology, IEEE Trans. Electron Devices ED-29, 1772–1777 (1982).

    Article  Google Scholar 

  198. K. Yamasaki, Y. Yamane, and K. Kurumada, Below 20 psJgate operation with GaAs SAINT FETs at room temperature, Electron. Lett. 18(4), 592–593 (1982).

    Article  Google Scholar 

  199. R. A. Sadler and L. F. Eastman, High speed logic at 300 K with self-aligned submicrometer-gate GaAs MESFETs, IEEE Electron Device Lett. EDL-4(7), 215–217 (1983).

    Article  Google Scholar 

  200. M. J. Helix, S. A. Jamison, C. Chao, and M. S. Shur, Fan out and speed of GaAs SDFL logic, IEEE J. Solid State Circuits SC-17(6), 1226–1231 (1982).

    Article  Google Scholar 

  201. T. Vu, P. Roberts, R. Nelson, G. Lee, B. Hanzal, K. Lee, D. Lamb, M. Helix, S. Jamison, S. Hanka, J. Brown, and M. S. Shur, A 432-cell GaAs SDFL gate array with on-chip 64-bit RAM, IEEE Trans. Electron Devices ED-31(2), 144–156 (1984).

    Article  Google Scholar 

  202. A. A. Immorlica, Jr. and F. H. Eisen, Planar passivated GaAs hyperabrupt varactor diodes, in Proceedings of Sixth Biennial Cornell IEEE conference, 1977, pp. 151–159.

    Google Scholar 

  203. C. O. Bozler, J. P. Donnelly, R. A. Murphy, R. W. Laton, R. W. Sudbury, and W. T. Lindley, High efficiency ion-implanted lo-hi-lo GaAs IMPATT diodes, Appl. Phys. Lett. 29, 123–125 (1976).

    Article  Google Scholar 

  204. J. J. Berenz, F. B. Fank, and T. L. Hierl, Ion implanted p-n junction indium phosphide IMPATT diodes, Electron. Lett. 14(21), 683–684 (1978).

    Article  Google Scholar 

  205. J. C. C Fan, R. L. Chapman, J. P. Donnelly, G. W. Turner, and C. O. Bozler, Ion implanted laser annealed GaAs solar cells, Appl. Phys. Lett. 34, 780–782 (1979).

    Article  Google Scholar 

  206. H. T. Huan, F. H. Doerbeck, and W. V. Mclevige, Ion implanted GaAs bipolar transistors, Electron. Lett. 16, 637–638 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shur, M. (1987). GaAs Technology. In: GaAs Devices and Circuits. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1989-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1989-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1991-5

  • Online ISBN: 978-1-4899-1989-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics