Skip to main content

Modulation Doped Field Effect Transistors

  • Chapter
GaAs Devices and Circuits

Part of the book series: Microdevices ((MDPF))

  • 430 Accesses

Abstract

Modulation doped field effect transistors (MO DFETs), also called high electron mobility transistors (HEMTs) and selectively doped heterojunction transistors (SDHTs), have recently emerged as the fastest solid state devices. Ring oscillator propagation delay times as low as 10.2 ps at 300 K and 5.8 ps at 77 K have been demonstrated. MODFET frequency dividers have operated at up to 10.1 GHz input frequency. A 4-kb MODFET RAM has also been fabricated. (A more detailed discussion of the MODFET IC performance may be found in Chapter 9.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Shockley, U.S. Patent 2,569,347 (1951).

    Google Scholar 

  2. A. I. Gubanov, Zh. Tekh. Fiz. 21, 304 (1951)

    Google Scholar 

  3. 2a. A. I. Gubanov Zk. Eksp. Teor. Fiz. 21, 721 (1951).

    Google Scholar 

  4. H. Kroemer, Theory of a wide-gap emitter for transistors, Proc. IRE 45, 1535 (1957).

    Google Scholar 

  5. R. A. Anderson, IBM J. Res. Dev. 4, 283 (1960).

    Google Scholar 

  6. R. L. Anderson, Experiments on Ge-GaAs heterojunctions, Solid State Electron. 5, 341 (1962).

    Google Scholar 

  7. M. J. Adams and A. Nussbaum, A proposal for a new approach to heterojunction theory, Solid-State Electron. 22, 783–791 (1979).

    Google Scholar 

  8. O. von Roos, Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium, Solid-State Electron. 23, 1069–1075 (1980).

    Google Scholar 

  9. H. Kroemer, Critique of two recent theories of heterojunction lineups, IEEE Electron Devices Lett. EDL-4(2), 25–27 (1983).

    Google Scholar 

  10. H. Unlu and A. Nussbaum, Band discontinuities as heterojunction device design parameters, IEEE Trans. Electron Devices, ED-33, 616–619 (1986).

    Google Scholar 

  11. A. G. Milnes and D. L. Feucht, Heterojunctions and Metal-Semiconductor Junctions, Academic, New York, 1972.

    Google Scholar 

  12. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions, Pergamon, London, 1974.

    Google Scholar 

  13. H. C. Casey, Jr. and M. B. Panich, Heterojunction Lasers, Academic, New York, 1978.

    Google Scholar 

  14. T. L. Taunsley, Heterojunction Properties in Semiconductors and Semimetals, Vol. 7, pp. 294–366, Academic, New York, 1971.

    Google Scholar 

  15. H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction LED’s, Academic, New York, 1977.

    Google Scholar 

  16. H. Kressel and J. K. Butler, Heterojunction Laser Diodes in Semiconductors and Semimetals, Vol. 14, pp. 66–192, Academic, New York, 1979.

    Google Scholar 

  17. L. Esaki and R. Tsu, Internal Report RC 2418, IBM Research, March 26, 1969.

    Google Scholar 

  18. R. Dingle, H. L. Stornier, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett 37, 805 (1978).

    Google Scholar 

  19. T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, A new field effect transistor with selectively doped GaAs/n-AlxGa1_xAs heterojunctions, Jpn. Appl Phys. 19, L225-L227 (1980).

    Google Scholar 

  20. S. S. Perlman and D. L. Feucht, p-n heterojunctions, Solid State Electron. 7, 911–923 (1964).

    Google Scholar 

  21. J. A. Van Vechten, Phys. Rev. 187, 1007 (1969).

    Google Scholar 

  22. See the review by F. Stern, Quantum properties of surface space-charge layers, CRC Crit. Rev. Solid State Sci, 499 (1974).

    Google Scholar 

  23. F. Stern, Self-consistent results for n-type Si inversion layers, Phys. Rev. B 5, 4891 (1972).

    Google Scholar 

  24. F. F. Fang and W. E. Howard, Negative field-effect mobility on (100) Si surfaces, Phys. Rev. Lett. 16, 797 (1966).

    Google Scholar 

  25. D. Delagebeaudeuf and N. T. Ling, Metal-(n)AlGaAs-GaAs two dimensional electron gas FET, IEEE Trans. Electron Devices ED-29, 955 (1982).

    Google Scholar 

  26. Kwyro Lee, Michael Shur, Timothy J., Drummond, S. L. Su, W. G. Lyons, R. Fisher, and Hadis Morkoc, Design and fabrication of high transconductance modulation-doped (Al, Ga)AsJGaAs FETs, J. Vac. Sci Technol. B 1(2), 186–189 (1983).

    Google Scholar 

  27. W. B. Joyce and R. W. Dixon, Analytic approximations for the Fermi energy of an ideal Fermi gas, Appl. Phys. Lett. 31, 354 (1977).

    Google Scholar 

  28. Kwyro Lee, Michael Shur, Tim Drummond, and Hadis Morkoc, Electron density in the two-dimensional electron gas in modulation doped layers, J. Appl. Phys. 54(4), 2093–2096 (1983).

    Google Scholar 

  29. See for example, R. A. Smith, Semiconductors, Cambridge University Press, Cambridge, Second Edition, p. 83 (1978).

    Google Scholar 

  30. T. J. Drummond, H. Morkoc, K. Lee, and M. S. Shur, Model for modulation doped field effect transistor, IEEE Electron Device Letters EDL-3(11), 338–341 (1981).

    Google Scholar 

  31. T. J. Drummond, W. Kopp, M. Keever, H. Morkoc, and A. Y. Cho, Electron mobility in single and multiple period modulation-doped (Al, Ga)AsJGaAs heterostructures, J. Appl. Phys. 53(2), 1023–1027 (1982).

    Google Scholar 

  32. K. Lee, M. S. Shur, J. Klem, T. J. Drummond, and H. Morkoc, Parallel conduction correction to measured room mobility in (Al, Ga)As-GaAs modulation doped layers, Jpn. J. Appl. Phys. 23(4), L230–231 (1984).

    Google Scholar 

  33. A. A. Grinberg and M. S. Shur, Density of two-dimensional electron gas in modulation-doped structure with graded interface, Appl. Phys. Lett. 45(5), 573–574 (1984).

    Google Scholar 

  34. A. A. Grinberg and M. S. Shur, Modulation-doped structures with graded interfaces, J. Appl. Phys. 57(4), 1242–1246 (1985).

    Google Scholar 

  35. F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967).

    Google Scholar 

  36. A. A. Grinberg and M. S. Shur, Effect of image charges on impurity scattering of two-dimensional electron gas in AlGaAsJGaAs, J. Appl. Phys. 58(1), 382–386 (1985).

    Google Scholar 

  37. Kwyro Lee, Michael Shur, Timothy J. Drummond, and Hadis Morkoc, Low field mobility of 2-d electron gas in modulation doped structures, J. Appl. Phys. 54, 2093 (1983).

    Google Scholar 

  38. J. V. DiLorenzo, R. Dingle, M. Feuer, A. C. Gossard, R. Hendel, J. C. M. Hwang, A. A. Kastalsky, V. G. Keramidas, R. A. Keihl, and P. O’Connor, IEDM Tech. Dig. 25, 578 (1982).

    Google Scholar 

  39. P. J. Price, J. Vac. Sci Technol. 19, 599 (1981).

    Google Scholar 

  40. K. Hess, Appl Phys. Lett. 35, 484 (1979).

    Google Scholar 

  41. S. Mori and T. Ando, J.Phys. Soc. Jpn. 48, 865 (1980).

    Google Scholar 

  42. Y. Takeda, H. Kamei, and A. Sasaki, Electron. Lett. 18(7), 309 (1982).

    Google Scholar 

  43. F. Stern, Phys. Rev. Lett. 44(22), 1469 (1980).

    Google Scholar 

  44. F. Stern, Phys. Rev. Lett. 18, 546 (1976).

    Google Scholar 

  45. N. T. Linh, in Festkorperprobleme (Advances in Solid State Physics), Ed. by P. Grosse, Vieweg, Braunschweig, 1983, Vol. XXIII, p. 227.

    Google Scholar 

  46. H. L. Stornier, Surf. Sci 132, 519 (1983).

    Google Scholar 

  47. R. Ando, J.Phys. Soc. Jpn. 51, 3900 (1982).

    Google Scholar 

  48. G. Fishman and D. Calecki, Physica B 117/118, 744 (1983).

    Google Scholar 

  49. F. Stern, Appl. Phys. Lett. 43, 974 (1983).

    Google Scholar 

  50. B. Vinter, Appl Phys. Lett. 44, 307 (1984).

    Google Scholar 

  51. Hadis Morkoc, Modulation doped AlxGax AsJGaAs field effect transistors (MODFETs): Analysis, fabrication, performance, in Molecular Beam Epitaxy and Heterostructures, Nato Adv. Study Institute, Ed. by L. L. Chang and K. Kloog, Martinus Nijhoff, The Hague, 1983.

    Google Scholar 

  52. P. F. Maldacue, Surf. Sci 73, 296 (1978).

    Google Scholar 

  53. J. V. DiLorenzo, R. Dingle, M. Feuer, A. C. Gossard, R. Hendel, J. S. M. Hwang, A. Kastalsky, V. G. Keramidas, R. A. Kiehl, and P. O’Connor, Material and device considerations for selectively doped heterojunction transistors, IEDM Tech. Dig. 25(1), 578 (1982).

    Google Scholar 

  54. B. Vinter, Phonon-limited mobility in GaAlAs/GaAs heterostructures, Appl. Phys. Lett. 45(5), 581–583 (1984).

    Google Scholar 

  55. D. L. Rode, in Semiconductors and Semimetals, Ed. R. K. Willardson and A. C. Beer, Academic, New York, 1975, Vol. 10, pp. 4–28.

    Google Scholar 

  56. S. Hiyamizu, J. Saito, K. Nanbu, and T. Ishikawa, Jpn. J. Appl. Phys. 22, L609 (1983).

    Google Scholar 

  57. N. Sano, H. Kato, and S. Chika, Solid State Commun. 49, 123 (1984).

    Google Scholar 

  58. J. C. Hwang, A. Kastalsky, H. L. Stornier, and V. G. Keramidas, Appl. Phys. Lett. 44, 802 (1984).

    Google Scholar 

  59. M. Heiblum, E. E. Mendez, and F. Stern, Appl. Phys. Lett. 44, 1064 (1984).

    Google Scholar 

  60. L. F. Eastman, Private Communication, 1984.

    Google Scholar 

  61. K. Hess, in Proc. 3rd Int. Cont. on Hot Carriers in Semicond., Montpellier, 1981, J. Phys. (Paris) C 7, 3 (1981).

    Google Scholar 

  62. M. Inoue, S. Hiyamizu, H. Hida, H. Hashimoto, and Y. Inuishi, in Proc. 3rd Int. Cont. on Hot Carriers in Semicond. Montpellier, 1981, J. Phys. (Paris) C 7, 19 (1981).

    Google Scholar 

  63. M. Inoue, S. Hiyamizu, M. Inayama, and Y. Unuishi, in Proc. Int. Conf. Solid State Devices, Tokyo 1982, Jpn. J. Appl. Phys$122, Suppl. 22– 1, 357 (1983).

    Google Scholar 

  64. T. J. Drummond, M. Keever, W. Kopp, H. Morkoc, K. Hess, and B. G. Streetman, Field dependence of mobility in Al0.2Ga0.8As/GaAs heterojunctions at very low fields, Electron. Lett. 17(15), 545–546 (1981).

    Google Scholar 

  65. T. J. Drummond, M. Keever, and H. Morkoc, Jpn. J. Appl. Phys. 21, L65 (1982).

    Google Scholar 

  66. M. Inoue, M. Inayama, and S. Hiyamizu, Parallel electron transport and field effects of electron distributions in selectively doped GaAs/n-AlGaAs, Jpn. J. Appl. Phys. 22(4), L213–L215 (1983).

    Google Scholar 

  67. M. Tomizawa, K. Yokoyama, and A. Yoshii, Hot-electron velocity characteristics of AlGaAsJGaAs heterostructures, IEEE Electron Devices Lett. EDL-5(11), 464–465 (1984).

    Google Scholar 

  68. S. Blakemore, Semiconductor and other major properties of GaAs, J. Appl. Phys. 53(10), R123-R181 (1982).

    Google Scholar 

  69. T. H. Chen, High speed GaAs device and integrated circuit modeling and simulation, Ph.D. thesis, University of Minnesota, 1984.

    Google Scholar 

  70. M. B. Das, A high ratio design approach to millimeter-wave HEMT structures, IEEE Trans. Electron Devices ED-32(1), 11–17 (1985).

    Google Scholar 

  71. S. Hiyamizu and T. Mimura, MBE-grown selectively doped GaAsJN-AlGaAs heterostructures and their application to high electron mobility transistors, Semiconductor Technologies, Ed. by J. Nishizawa, North Holland, Amsterdam, The Netherlands, 1982, p. 258–271.

    Google Scholar 

  72. N. C Cirillo, Jr., M. Shur, and J. K. Abrokwah, Inverted GaAsJAlGaAs Modulation-Doped Field-Effect Transistors with extremely high transconductances, IEEE Electron Device Lett., EDL-7(2), 71–74 (1986).

    Google Scholar 

  73. K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, Current-voltage and capacitance-voltage characteristics of modulation doped field effect transistors, IEEE Trans. Electron Devices ED-30(3), 207–212 (1983).

    Google Scholar 

  74. P. L. Hower and G. Bechtel, Current saturation and small-signal characteristics of GaAs field-effect transistors, IEEE Trans. Electron Devices ED-20, 213 (1973).

    Google Scholar 

  75. C. H. Hyun, M. S. Shur, and N. C Grillo, Jr., Design and simulation of modulation doped integrated circuits, IEEE Trans. Computer Aided Design, CAD-5(2), 284–292 (1986).

    Google Scholar 

  76. J. Yoshida and M. Kurata, Analysis of high electron mobility transistors based on two-dimensional numerical model, IEEE Electron Device Lett. EDL-5(12), 508–510 (1984).

    Google Scholar 

  77. T. J. Drummond, R. Rischer, P. Miller, H. Morkoc, and A. Y. Cho, Influence of substrate temperatures on electron mobility in normal and inverted single period modulation doped AlxGa1-xAs/GaAs structures, J. Vac. Sci Technol. 21, 684–688 (1982).

    Google Scholar 

  78. R. E. Thorne, R. Rischer, S. L. Su, W. Kopp, T. J. Drummond, and H. Morkoc, Performance of inverted structure modulation doped Schottky barrier field effect transistors, Jpn. J. Appl. Phys. Lett. 21, L223-L224 (1982).

    Google Scholar 

  79. D. Delagebeaudeuf and N. T. Linh, Charge control of the heterojunction two-dimensional electron gas for MESFET application, IEEE Trans. Electron Devices ED-28(7), 790 (1981).

    Google Scholar 

  80. K. Lee, M. S. Shur, T. J. Drummond, H. Morkoc, Charge control model of an “inverted” GaAs-(AlGa)As modulation doped structure, J. Vac. Sci Technol. B 2(2), 113–116 (1984).

    Google Scholar 

  81. H. Morkoc, Current transport in modulation doped (Al, Ga)AsJGaAs heterostructures: Applications to high speed FETs, IEEE Electron Devices Lett. EDL-2, 260 (1981).

    Google Scholar 

  82. T. J. Drummond, S. L. Su, W. G. Lyons, R. Fischer, W. Kopp, H. Morkoc, K. Lee, and M. S. Shur, Enhancement of electron velocity in modulation doped (Al, Ga)AsJGaAs FETs at cryogenic temperatures, Electron. Lett. 18(24), 1057 (1982).

    Google Scholar 

  83. T. Mimura, S. Hiyamizu, K. Joshin, and K. Hikosaka, Enhancement-mode high electron mobility transistors for logic applications, Jpn. J. Appl. Phys. 20(5), L317 (1981).

    Google Scholar 

  84. T. J. Drummond, R. Fisher, S. L. Su, W. G. Lyons, H. Morkoc, K. Lee, and M. S. Shur, Characteristics of modulation doped AlxGa1-xAsJGaAs field effect transistors: Effect of donor-electron separation, Appl. Phys. Lett. 42(3), 262 (1983). See also T. J. Drummond, S. L. Su, W. Kopp, R. Fischer, R. E. Thorne, H. Morkoc, K. Lee, and M. S. Shur, High velocity N-on and N-off modulation doped GaAsJAlxGa1_xAs FETs, IEEE, Proc. IEDM Tech. Dig. 25(1), 586 (1982).

    Google Scholar 

  85. M. Laviron, D. Delagebeaudeuf, P. Delescluse, J. Chaplart, and N. T. Linh, Low-noise two-dimensional electron gas FET, Electron. Lett. 17, 536 (1981).

    Google Scholar 

  86. J. H. Baek, M. S. Shur, and N. C Cirillo, Jr., Temperature and gate length dependence of MODFET parameters, unpublished.

    Google Scholar 

  87. K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, Parasitic MESFET in (Al, Ga)AsJGaAs modulation doped FETs and MODFET characterization, IEEE Trans. Electron Devices, ED-31(1), 29–35 (1984).

    Google Scholar 

  88. K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, A unified method for characterizing (Al, Ga)AsJGaAs MODFETs including parasitic MESFET conduction in the (Al, Ga)As, in Proceedings of Biannual IEEE Conferences on High Speed Devices, Cornell Univ., August 1973, pp. 177–186.

    Google Scholar 

  89. K. Lee, M. S. Shur, A. J. Valois, G. Y. Robinson, X. C. Zhu, and A. van der Ziel, A new technique for characterization of “end” resistance in modulation doped FETs, IEEE Trans. Electron Devices, ED-31, 1394–1398 (1984).

    Google Scholar 

  90. M. B. Das, W. Kopp, and H. Morkoc, Determination of carrier saturation velocity in short-gate-length modulation doped FETs, IEEE Electron Device Lett. EDL-5, 446–448 (1984).

    Google Scholar 

  91. J. F. Rochette, P. Delescluse, M. Laviron, D. Delagebeaudeuf, J. Chevrier, and N. T. Linh, Low temperature persistent photoconductivity in two-dimensional GaAs FETs, Proceedings 1982 Symposium on GaAs and Related Compounds, Albuquerque, New Mexico.

    Google Scholar 

  92. A. J. Valois, G. Y. Robinson, K. Lee, and M. S. Shur, Temperature dependence of the I-V characteristics of modulation-doped FETs, J. Vac. Sci Technol. B 1(2), 190–195 (1983).

    Google Scholar 

  93. R. J. Nelson, Long-lifetime photoconductivity effect in n-type GaA/As, Appl. Phys. Lett. 31(5), 351 (1977).

    Google Scholar 

  94. Kwyro Lee, Modulation doped AlxGa1-xAs/GaAs heterojunction field effect transistors, Ph.D. thesis, University of Minnesota, 1983.

    Google Scholar 

  95. T. J. Drummond, W. Kopp, R. Fischer, H. Morkoc, R. E. Thorne, and A. Y. Cho, Photoconductivity effects in extremely high mobility modulation-doped (Al, Ga)AsJGaAs heterostructures, J. Appl. Phys. 53(2), 1238 (1982).

    Google Scholar 

  96. T. J. Drummond, W. G. Lyons, S. L. Su, W. Kopp, H. Morkoc, K. Lee, and M. S. Shur, Bias dependence and light sensitivity of (Al, Ga)As/GaAs MODFETs at 77 K, IEEE Electron Devices ED-30(12), 1806–1811 (1983).

    Google Scholar 

  97. H. Morkoc, T. J. Drummond, and R. Fischer, Interfacial properties of (Al, Ga)As/GaAs structures: Effect of substrate temperature during growth by MBE, J. Appl. Phys. 53, 1030–1033 (1982).

    Google Scholar 

  98. R. Fischer, C. G. Hopkins, C. A. Evans, Jr., T. J. Drummond, W. G. Lyons, J. Klem, C. Colvard, and H. Morkoc, The properties of Si in AlxGa1-x As grown by molecular beam epitaxy, Proceedings 1982 Symposium on GaAs and Related Compound, Albuquerque, New Mexico.

    Google Scholar 

  99. T. H. Ning, C. M. Osburn, and H. N. Yu, Effect of electron trapping on IGFET characteristics, J. Elect. Math 6, 65–76 (1977).

    Google Scholar 

  100. L. Forbes, E. Sun, R. Alders, and J. Moll, Field induced reemission of electrons trapped in SiO2, IEEE Trans. Electron Devices ED-26, 1816–1818 (1979).

    Google Scholar 

  101. J. J. Wysocki, Drain-current distortion in CdSe thin-film transistors, IEEE Trans. Electron Devices ED-29, 1798–1805 (1982).

    Google Scholar 

  102. D. V. Lang, R. A. Logan, and H. Jaros, Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs, Phys. Rev. B 19, 1015–1030 (1979).

    Google Scholar 

  103. T. H. Miers, Schottky contact fabrication for GaAs MESFETs, J. Electrochem. Soc. 129,1795–1799 (1982).

    Google Scholar 

  104. M. S. Shur and N. C Cirillo, Temperature and gate length dependency of important MODFET parameters, presented at WOCSEMMAD-85.

    Google Scholar 

  105. K. Hess, H. Morkoc, H. Shichijo, and B. G. Streetman, Appl. Phys. Lett. 35, 469 (1979); see also K. Hess, Physica 117B, 723 (1983) and references therein.

    Google Scholar 

  106. J. Y. Chin, R. P. Holmstrom, and J. P. Salerno, Effect of traps on low-temperature high electron mobility transistor characteristics, IEEE Electron Device Lett. EDL-5(9), 381–384 (1984).

    Google Scholar 

  107. J. Klem, T. Masselink, D. Arnold, R. Fischer, T. J. Drummond, H. Morkoc, K. Lee, and M. S. Shur, Persistent photoconductivity in (Al, Ga)As/GaAs modulation doped structures: Dependence on structure and growth temperature, J. Appl. Phys. 54(9), 5214–5217 (1983).

    Google Scholar 

  108. N. C Cirillo, J. K. Abrokwah, and M. S. Shur, Self-aligned modulation-doped (Al, Ga)AsJGaAs field-effect transistors, IEEE Electron Device Lett. EDL-5(4), 129–131 (1984).

    Google Scholar 

  109. N. C Cirillo, J. K. Abrokwah, and M. S. Shur, S self-aligned gate process for ICs based on modulation doped (Al, Ga)AsJGaAs FETs, Proc. 42nd Dev. Res. Conf., June 1984, p. IIA-4.

    Google Scholar 

  110. M. S. Shur, T. H. Chen, C. H. Hyun, P. N. Jenkins, and N. C Cirillo, Jr., Design and simulation of self-aligned modulation doped AlGaAsJGaAs ICs, ISSCC 1985 Digest of Technical papers, pp. 264–265, published by Lewis Winner, Coral Gables, Florida 33134, 1985.

    Google Scholar 

  111. N. C Cirillo, J. K. Abrokwah, and S. Jamison, A self-aligned gate modulation doped AlGaAsJGaAs FET IC process, 1984, GaAs IC symposium Technical Digest, pp. 167–170, October 1984.

    Google Scholar 

  112. M. Shur, J. K. Abrokwah, R. R. Daniels, D. K. Arch, and N. C Cirillo, Jr., Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo, 1986, pp. 363–366.

    Google Scholar 

  113. N. C Cirillo, A. Fraasch, H. Lee, L. F. Eastman, M. S. Shur, and S. Baier, Novel multilayer modulation doped (Al, Ga)As/GaAs structures for self aligned gate FETs, Electron. Lett. 20(21), 854–855 (1984).

    Google Scholar 

  114. H. Lee, G. Wicks, and L. F. Eastman, High temperature annealing of modulation doped GaAsJAlGaAs heterostructures for FET applications, Proc. of IEEEJCornell Conf. on high-speed semiconductor devices and circuits, August 1984, pp. 204–208.

    Google Scholar 

  115. P. Solomon, C. M. Knoedler, and S. L. Wright, A GaAs gate heterojunction FET, IEEE Electron Device Lett. EDL-5(9), 379–381 (1984).

    Google Scholar 

  116. P. M. Solomon, T. W. Hickmott, H. Morkoc, and R. Fischer, Appl. Phys. Lett. 42, 821 (1983).

    Google Scholar 

  117. T. W. Hi’ckott, P. M. Solomon, R. Fischer, and H. Morkoc, Appl. Phys. Lett. 44, 90 (1984).

    Google Scholar 

  118. K. Hikosaka, T. Mimura, and K. Joshin, Jpn. J. Appl. Phys. 20, L847 (1981).

    Google Scholar 

  119. R. Zuleg, J. K. Notthoff, and G. L. Troeger, Double-implanted GaAs complementary JFET, IEEE Electron Device Lett. EDL-5, 21, 23 (1984).

    Google Scholar 

  120. D. Arnold, A. Ketterson, T. Henderson, J. Klem, and H. Morkoc, Determination of the valence band discontinuity between GaAs and (Al, Ga)As by the use of p+-GaAs-(Al, Ga)As-p--GaAs capacitors, Appl. Phys. Lett. 45(11), 1237–1239 (1984).

    Google Scholar 

  121. H. L. Stornier and W. T. Tang, Appl. Phys. Lett. 36, 685 (1980).

    Google Scholar 

  122. H. L. Stornier, A. C. Gossard, W. Wiegman, R. Blondel, and K. Baldwin, Temperature dependence of the mobility of two-dimensional hole systems in modulation-doped GaAs-(Al, Ga)As, Appl. Phys. Lett. 44, 139–141 (1984).

    Google Scholar 

  123. H. L. Stornier, K. Baldwin, A. C. Gossard, and W. Wiegman, Modulation-doped field effect transistor based on a two-dimensional hole gas, Appl. Phys. Lett. 44, 1062–1064 (1984).

    Google Scholar 

  124. W. I. Wang and S. Tiwari, p-channel Ga0.5Al0.5As/GaAs MODFETs, presented at 42nd Annual Device Res. Conf., Santa Barbara, June 1984.

    Google Scholar 

  125. R. A. Kiehl and A. C. Gossard, p-channel (Al, Ga)AsJGaAs modulation doped logic gates, IEEE Electron Devices Lett. EDL-5(10), 420–422 (1984).

    Google Scholar 

  126. R. A. Kiehl, H. L. Stornier, K. Baldwin, A. C. Gossard, and W. Wiegman, Modulation doped field effect transistors and logic gates based on two-dimensional hole gas, presented at 42nd Annual Device Res. Conf., Santa Barbara, June 1984.

    Google Scholar 

  127. R. A. Kiehl and A. C. Gossard, Complementary p-MODFET and n-HB MESFET (Al,Ga)As Transistors, IEEE Electron Devices Lett. EDL-5(12), 521–523 (1984).

    Google Scholar 

  128. A. J. Valois and G. Y. Robinson, IEEE Electron Device Lett., EDL-4, 360 (1983).

    Google Scholar 

  129. S. Subramanian, IEEE Trans. Eletctron Dev., ED-32(5), 865–870 (1985).

    Google Scholar 

  130. J. K. Abrokwah, M. Shur, R. R. Daniels, and D. K. Arch, Effect of traps on current-voltage characteristics of self-aligned Modulation Doped Field Effect Transistors, unpublished.

    Google Scholar 

  131. A. Kastalski and R. A. Kiehl, IEEE Trans. Electron Dev., ED-33(3), 414–423, 1986.

    Google Scholar 

  132. N. C Cirillo, M. Shur, P. J. Vold, J. K. Abrokwah, R. R. Daniels, and O. N. Tufte, IDEM Tech. Digest, 317–320, 1985.

    Google Scholar 

  133. N. C Cirillo, M. Shur, P. J. Vold, J. K. Abrokwah, and O. N. Tufte, IEEE Electron Device Lett., EDL-6, 645–647 (1985).

    Google Scholar 

  134. T. Mizutani, S. Fujita, Y. Yanagawa, Electronics Lett., 21, 1116–1117 (1985).

    Google Scholar 

  135. R. R. Daniels, R. Mactaggart, J. K. Abrokwah, O. N. Tufte, M. Shur, J. Baek, and P. Jenkins, Complementary heterostructure insulated gate FET circuits for high-speed, low-power VLSI, IEDM Tech. Digest, paper 17.3, 448–451 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shur, M. (1987). Modulation Doped Field Effect Transistors. In: GaAs Devices and Circuits. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1989-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1989-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1991-5

  • Online ISBN: 978-1-4899-1989-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics