Skip to main content

Secondary Metabolites of Penicillium and Acremonium

  • Chapter

Part of the book series: Biotechnology Handbooks ((BTHA,volume 1))

Abstract

Fungi elaborate an almost bewildering array of metabolites that, being additional to those normally regarded as having a specific role in the living process, are generally termed secondary metabolites. It is now clear that all the compounds are biosynthesized from a few key metabolic intermediates that are themselves either intermediates or end products of primary metabolism, which can be thought of as all the integrated metabolic processes the products of which are ultimately involved in structure, replication, differentiation, communication, and homeostasis at the cellular or organismic level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, M., Yamatodani, S., Yamano, T., Kozu, Y., and Yamada, S., 1967, Production of alkaloids and related substances by fungi. I. Examination of filamentous fungi for their ability of producing ergot alkaloids, J. Agric. Chem. Soc. Jpn. 41:68–71.

    CAS  Google Scholar 

  • Abe, M., Ohmomo, S., Ohashi, T., and Tabuchi, T., 1969, Isolation of chanoclavine I and two new interconvertible alkaloids, rugulovasine A and B, from cultures of Penicillium concavo-rugulosum, Agric. Biol. Chem. 33:469–471.

    CAS  Google Scholar 

  • Abraham, E. P., and Florey, H. W., 1949, Substances produced by fungi imperfecti and ascomycetes, in: Antibiotics, Vol. I (H. W. Florey, E. Chain, N. G. Heatley, M. A. Jennings, A. G. Sanders, E. P. Abraham, and M. E. Florey, eds.), Oxford University Press, London, p. 274.

    Google Scholar 

  • Achenbach, H., Strittmatter, H., and Kohl, W., 1972, Die Strukturen der Xanthocilline Yl and Y2, Chem. Ber. 105:3061–3066.

    PubMed  CAS  Google Scholar 

  • Acker, T. E., Brenneisen, P. E., and Tanenbaum, S. W., 1966, Isolation, structure and radiochemical synthesis of 3,6-dimethyl-4-hydroxy-2-pyrone, J. Am. Chem. Soc. 88:834–837.

    PubMed  CAS  Google Scholar 

  • Ackland, M. J., Hanson, J. R., Ratcliffe, A. H., and Sadler, I. H., 1982, A 2H NMR study of the rearrangement step in aphidicolin biosynthesis, J. Chem. Soc. Chem. Commun. 165-166.

    Google Scholar 

  • Actam, H. K., Campbell, I. M., and McCorkindale, N.J., 1967, Ergosterol peroxide: A fungal artefact, Nature (London) 216:397.

    Google Scholar 

  • Actams, M. R., and Bu’Lock, J. D., 1975, Biosynthesis of the diterpene antibiotic, aphidicolin, by radioisotope and 13C nuclear magnetic resonance methods, J. Chem. Soc. Chem. Commun. 389.

    Google Scholar 

  • Aldridge, D. C., and Turner, W. B., 1971, Two new mould metabolites related to avenaciolide, J. Chem. Soc. C 2431-2432.

    Google Scholar 

  • Aldridge, D. C., Giles, D., and Turner, W. B., 1971, Antibiotic 1233A: A fungal β-lactone, J. Chem. Soc. C 3888-3891.

    Google Scholar 

  • Ali, M. S., Shannon, J. S., and Taylor, A., 1968, Isolation and structures of 1,2,3,4-tetrahydro-1,4-dioxopyrazino [l,2-a]-indoles from cultures of Penicillium terlikowskii, J. Chem. Soc. C 2044.

    Google Scholar 

  • Ando, K., Kato, A., and Suzuki, S., 1970, Isolation of 2,4-dichlorophenol from a soil fungus and its biological significance, Biochem. Biophys. Res. Commun. 39:1104–1107.

    PubMed  CAS  Google Scholar 

  • Ando, K., Matsuura, I., Nawata, Y., Endo, H., Sasaki, H., Okytomi, T., Saeki, T., and Tamura, G., 1978, Funiculosin, a new antibiotic. II. Structure elucidation and antifungal activity, J. Antibiot. (Tokyo) 31:533–538.

    CAS  Google Scholar 

  • Angeletti, A., Tappi, G., and Biglino, G., 1952, Composition of the mycelium of Penicillium notatum, Ann. Chim. (Rome) 42:502–506.

    CAS  Google Scholar 

  • Anslow, W. K., Breen, J., and Raistrick, H., 1940, Studies in the biochemistry of microorganisms. 64. Emodic acid and hydroxyemodin, metabolic products of a strain of Penicillium cyclopium Westling, Biochem. J. 34:159–168.

    PubMed  CAS  Google Scholar 

  • Arndt, R. R., Holzapfel, C. W., Ferriera, N. P., and Marsh, J. J., 1974, The structure and biogenesis of desoxyverrucarin E, a metabolite of Eupenicillium hirayamae, Phytochemistry 13:1865–1870.

    CAS  Google Scholar 

  • Atherton, J., Bycroft, B. W., Roberts, J. C., Roffey, P., and Wilcox, M. E., 1968, Studies in mycological chemistry. 23. The structure of flavomannin, a metabolite of Penicillium wortmanni, J. Chem. Soc. C 2560-2564.

    Google Scholar 

  • Aulin-Erdtman, G., 1951, Studies in the tropolone series. IV. Stipitatic, puberulic and puberulonic acids, Acta Chem. Scand. 5:301–315.

    CAS  Google Scholar 

  • Austin, D. J., and Meyers, M. B., 1964, 3-O-methylviridicatin, a new metabolite from Penicillium puberulum, J. Chem. Soc. 1197-1198.

    Google Scholar 

  • Awaya, J., Kesado, T., Omura, S., and Lukacs, G., 1975, Preparation of 13C-and 3H-labeled cerulenin and biosynthesis with 13C-NMR, J. Antibiot. (Tokyo) 28:824–827.

    CAS  Google Scholar 

  • Bar, H., Zarnack, J., and Pfeifer, S., 1971a, Phenoxazinone in Kulturlösungen von Penicillium notatum Westl., Pharmazie 26:314.

    Google Scholar 

  • Bar, H., Zarnack, J., and Pfeifer, S., 1971b, N-Formyl-2-aminophenol—ein neuer Naturstoff, Pharmazie 26:108.

    Google Scholar 

  • Barrow, K. D., Colley, P. W., and Tribe, D. E., 1979, Biosynthesis of the neurotoxin alkaloid roquefortine, J. Chem. Soc. Chem. Commun. 225-226.

    Google Scholar 

  • Barton, D. H. R., and Sutherland, J. K., 1965, The Nonadrides. I. Introduction and general survey, J. Chem. Soc. 1769-1798.

    Google Scholar 

  • Bassett, E. W., and Tanenbaum, S. W., 1958, The metabolic products of Penicillium patulum and their probable interrelation, Experientia 14:38–40.

    CAS  Google Scholar 

  • Bates, M. L., Reid, W. W., and White, J. D., 1976, Duality of pathways in the oxidation of ergosterol to its peroxide in vivo, J. Chem. Soc. Chem. Commun. 44-45.

    Google Scholar 

  • Belgian patent, 1962, Fusidic acid, Chem. Abstr. 59:2133.

    Google Scholar 

  • Bentley, R., and Keil, J. G., 1962, Tetronic acid biosynthesis in moulds. II. Formation of penicillic acid in Penicillium cyclopium, J. Biol. Chem. 237:867–873.

    PubMed  CAS  Google Scholar 

  • Bentley, R., and Thiessen, C. P., 1957, Biosynthesis of itaconic acid in Aspergillus terreus, J. Biol. Chem. 226:673–720.

    PubMed  CAS  Google Scholar 

  • Bentley, R., and Zwitkowits, P. M., 1967, Biosynthesis of tropolones in Penicillium stipitatum. VII. The formation of polyketide lactones and other nontropolone compounds as a result of ethionine inhibition, J. Am. Chem. Soc. 89:676–685.

    PubMed  CAS  Google Scholar 

  • Bentley, R., Bhate, D. S., and Keil, J. G., 1962, Tetronic acid biosynthesis in moulds. I. Formation of carlosic and carolic acids in Penicillium charlesii, J. Biol. Chem. 237:859–866.

    PubMed  CAS  Google Scholar 

  • Betina, V., Nemec, P., Dobias, J., and Barath, Z., 1962, Cyanein, a new antibiotic from Penicillium cyaneum, Folia Microbiol. 7:353–357.

    CAS  Google Scholar 

  • Betina, V., Fuska, J., Kjaer, A., Kutkova, M., Nemec, P., and Shapiro, R. H., 1966, Production of cyanein by Penicillium simplicissimum, J. Antibiot. (Tokyo) 19:115–117.

    CAS  Google Scholar 

  • Better, J., and Gatenbeck, S., 1976, l,4-Dihydroxy-2-methoxy-6-methyl-benzene, a metabolite of Penicillium baarnense, Acta Chem. Scand. 30B:368.

    Google Scholar 

  • Biollaz, M., Buchi, G., and Milne, G., 1968, The biosynthesis of the aflatoxins, J. Am. Chem. Soc. 92:1035–1043.

    Google Scholar 

  • Birch, A. J., and Kocor, M., 1960, Studies in relation to biosynthesis. XXII. Palitantin and cyclopaldic acid, J. Chem. Soc. 866-871.

    Google Scholar 

  • Birch, A. J., and Pride, E., 1962, Studies in relation to biosynthesis. XXVI. 7-Hydroxy-4,6-dimethylphthalide, J. Chem. Soc. 370-371.

    Google Scholar 

  • Birch, A. J., and Russell, R. A., 1972, Studies in relation to biosynthesis. 44. Structural elucidations of brevianamides-B,-C.,-D, Tetrahedron 28:2999–3008.

    CAS  Google Scholar 

  • Birch, A. J., and Stapleford, K. S. J., 1967, The structure of nalgiolaxin, J. Chem. Soc. C 2570-2571.

    Google Scholar 

  • Birch, A. J., and Wright, J. J., 1969, Brevianamides: A new class of fungal alkaloid, Chem. Commun. 644-645.

    Google Scholar 

  • Birch, A. J., Kocor, M., Sheppard, N., and Winter, J., 1962, Studies in relation to biosynthesis. 29. The terpenoid chain of mycelianamide, J. Chem. Soc. 1502-1505.

    Google Scholar 

  • Birch, A. J., Qureshi, A. A., and Rickards, R. W., 1968, Metabolites of Aspergillus indicus: The structure and some aspects of the biosynthesis of dihydrocanadensolide, Aust. J. Chem. 21:2775–2784.

    CAS  Google Scholar 

  • Birch, A. J., Gager, F., Mo, L., Pelter, A., and Wright, J. J., 1969, Studies in relation to biosynthesis. XLI. Canescin, Aust. J. Chem. 22:2429–2436.

    CAS  Google Scholar 

  • Bird, B. A., and Campbell, I. M., 1982a, Occurrence and biosynthesis of asperphenamate in solid cultures of Penicillium brevicompactum, Phytochemistry 21:2405–2406.

    CAS  Google Scholar 

  • Bird, B. A., and Campbell, I. M., 1982b, Disposition of mycophenolic acid, brevianamide A, asperphenamate and ergosterol in solid cultures of Penicillium brevicompactum, Appl. Environ. Microbiol. 43:345–348.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., and Gowlland, A., 1962, Studies in the biochemistry of microorganisms. 110.c Production and biosynthesis of orsellinic acid by Penicillium madriti G. Smith, Biochem. J. 84:342–347.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., and Mohammed, Y. S., 1962, Studies in the biochemistry of micro-organisms. 111. The production of 1-phenylalanine anhydride (cis-l-3,6-dibenzyl-2,5-dioxopiperazine) by Penicillium nigricans (Bainer) Thorn, Biochem. J. 85:523–527.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., and Raistrick, H., 1934, The metabolic products of Penicillium minio-luteum Dierckx, minioluteic acid, Biochem. J. 28:828–836.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., and Raistrick, H., 1936, Isolation, properties and constitution of terrestric acid (ethyl carolic acid), a metabolic product of Penicillium terrestre Jensen, Biochem. J. 30:2194–2200.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., and Samant, M. S., 1960, Metabolites of Penicillium viridicatum Westling: Viridicatic acid (ethylcarlosic acid), Biochem. J. 74:369–373.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., Luckner, M., Mohammed, Y. S., and Stickings, C. E., 1963a, Studies in the biochemistry of micro-organisms. 114. Viridicatol and cyclopenol, metabolites of Penicillium viridicatum Westling and Penicillium cyclopium Westling, Biochem. J. 89:196–202.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J. H., Kalyanpur, M. G., and Stickings, C. E., 1963b, Studies in the biochemistry of micro-organisms. 113. Pencolide, a nitrogen-containing metabolite of Penicillium multicolor, Biochem. J. 86:237–243.

    PubMed  CAS  Google Scholar 

  • Bloomer, J. L., Moppett, C. E., and Sutherland, J. K., 1968, The Nonadrides. V. Biosynthesis of glauconic acid, J. Chem. Soc. C 588-591.

    Google Scholar 

  • Bodo, M., Massias, M., Molho, L., Molho, D., and Gombrisson, S., 1976, Application of carbon-13 NMR to the determination of biosynthesis of a fungal metabolite, spiculisporic acid, by Penicillium spiculisporum in shake culture, Bull. Mus. Natl. Hist. Nat. Sci. Phys.-Chim. 11:53–62.

    CAS  Google Scholar 

  • Boeckman, R. K., Fayos, J., and Clardy, J., 1974, A revised structure of vermiculine: A novel macrolide dilactone antibiotic from Penicillium vermiculatum, J. Am. Chem. Soc. 96:5954–5956.

    PubMed  CAS  Google Scholar 

  • Bond, R. F., Boeyens, J. C. A., Holzapfel, C. W., and Steyn, P. S., 1979, Cyclopiamines A and B, novel oxindole metabolites of Penicillium cyclopium Westling, J. Chem. Soc. Perkin Trans. 1 1751-1761.

    Google Scholar 

  • Bose, A. K., Das, K. G., Funke, P. T., Kugajevsky, I., Shukla, O. P., Khanchandani, K. S., and Suhadolnik, R. J., 1968, Biosynthetic studies on gliotoxin using stable isotopes and mass spectral methods, J. Am. Chem. Soc. 90:1038–1041.

    PubMed  CAS  Google Scholar 

  • Bracken, A., and Raistrick, H., 1947, Dehydrocarolic acid, a metabolic product of Penicillium cinerascens Biourge, Biochem. J. 41:569–575.

    CAS  Google Scholar 

  • Bracken, A., Pocker, A., and Raistrick, H., 1954, Studies in the biochemistry of microorganisms. 93. Cyclopenin, a nitrogen-containing metabolic product of Penicillium cyclopium Westling, Biochem. J. 57:587–595.

    PubMed  CAS  Google Scholar 

  • Breen, J., Dacre, J. C., Raistrick, H., and Smith, G., 1955, Studies in the biochemistry of microorganisms. 95. Rugulosin, a crystalline colouring matter of Penicillium rugulosum Thorn, Biochem. J. 60:618–626.

    PubMed  CAS  Google Scholar 

  • Broadbent, D., Mabelis, R. P., and Spencer, H., 1975, 3,6,8-Trihydroxy-l-methylxanthone—an antibacterial metabolite from Penicillium patulum, Phytochemistry 14:2082–2083.

    CAS  Google Scholar 

  • Brown, A. G., Smale, T. C., King, T. J., Hasenkamp, R., and Thompson, R. H., 1976, Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum, J. Chem. Soc. Perkin Trans. 1 1165-1170.

    Google Scholar 

  • Brundidge, S. P., Gaeta, F. C. A., Hook, D. J., Sapino, C., Elander, R. P., and Morin, R. B., 1980, Association of 6-oxopiperidine-2-carboxylic acid with penicillin V production in Penicillium chrysogenum fermentations, J. Antibiot. 33:1348–1351.

    PubMed  CAS  Google Scholar 

  • Bryant, R. W., and Light, R. J., 1974, Stipitatonic acid biosynthesis: Incorporation of [formyl-14C]-3-methylorcylaldehyde and [14C]stipitaldehydic acid, a new tropolone metabolite, Biochemistry 13:1516–1522.

    PubMed  CAS  Google Scholar 

  • Buchi, G., White, J. D., and Wogan, G. N., 1965, The structures of mitorubrin and mitorubrinol, J. Am. Chem. Soc. 87:3484–3489.

    Google Scholar 

  • Bu’Lock, J. D., 1980, Mycotoxins as secondary metabolites, in: The Biosynthesis of Mycotoxins (P. S. Steyn, ed.), Academic Press, New York, pp. 1–16.

    Google Scholar 

  • Bu’Lock, J. D., and Clay, P. T., 1969, Fatty acid cyclisation in the biosynthesis of brefeldin A: A new route to some fungal metabolites, Chem. Commun. 237-238.

    Google Scholar 

  • Bu’Lock, J. D., and Ryan, A. J., 1958, The biogenesis of patulin, Proc. Chem. Soc. (London) 222-223.

    Google Scholar 

  • Bu’Lock, J. D., and Smith, J. R., 1968, Modified anthraquinones from Penicillium islandicum, J. Chem. Soc. C 1941-1943.

    Google Scholar 

  • Burton, H. S., and Abraham, E. P., 1951, Isolation of antibiotics from a species of Cephalosporium: Cephalosporins Pl P2, P3, P4 and P5, Biochem. J. 50:168–174.

    PubMed  CAS  Google Scholar 

  • Cagnoli, N., Ceccherelli, P., Curini, M., Spagnoli, N., and Ribaldi, M, 1980, 19-Norisopimara-7,15-dien-3-one: A new norditerpenoid from Acremonium luzulae (Fuckel) Gams, J. Chem. Res. Synop. 8:276.

    Google Scholar 

  • Cagnoli, N., Ceccherelli, P., Curini, M., Madruzza, G. F., and Ribaldi, ML, 1982, Isopimara-7,15-dien-19-ol: A new diterpenoid from Acremonium luzulae (Fuckel) Gams, J. Chem. Res. Synop. 9:254.

    Google Scholar 

  • Cagnoli-Bellavita, N., Ceccherelli, P., Fringuelli, R., and Ribaldi, M., 1975, Ascochlorin: A ter-penoid metabolite from Acremonium luzulae, Phytochemistry 14:807.

    CAS  Google Scholar 

  • Cagnoli-Bellavita, N., Ceccherelli, P., Ribaldi, M., Polonsky, J., Baskevitch-Varon, Z., and Varenne, J., 1977, Structures of virescenosides D and H, new metabolites of Acremonium luzulae (Fuckel) Gams, J. Chem. Soc. Perkin Trans. 1 351-354.

    Google Scholar 

  • Campbell, I. M., Calzadilla, C. H., and McCorkindale, N. J., 1966, Some new metabolites related to mycophenolic acid, Tetrahedron Lett. 42:5107–5111.

    Google Scholar 

  • Canonica, L., Kroszczynski, W., Ranzi, B. M., Rindone, B., and Scolastico, C., 1971, The biosynthesis of mycophenolic acid, J. Chem. Soc. Chem. Commun. 257.

    Google Scholar 

  • Casey, M. L., Paulick, R. C., and Whitlock, H. W., 1978, Carbon-13 nuclear magnetic resonance study of the biosynthesis of daunomycin and islandicin, J. Org. Chem. 43:1627–1634.

    CAS  Google Scholar 

  • Ceccherelli, P., Fringuelli, R., Madruzza, G. F., and Ribaldi, M., 1975, Cerevisterol and ergosterol peroxide from Acremonium luzulae, Phytochemistry 14:1434.

    CAS  Google Scholar 

  • Chalmers, A. A., De Jesus, A. E., Gorst-Allman, C. P., and Steyn, P. S., 1981, Biosynthesis of PR toxin by Penicillium roqueforti, J. Chem. Soc. Perkin Trans. 1 2899-2903.

    Google Scholar 

  • Chaplen, P., and Thomas, R., 1960, Studies in the biosynthesis of fungal metabolites: The biosynthesis of palitantin, Biochem. J. 77:91–96.

    PubMed  CAS  Google Scholar 

  • Chen, Y. S., and Haskins, R. H., 1963, Studies on pigments of Penicillium funiculosum. I. Production of cholesterol, Can. J. Chem. 41:1647–1650.

    CAS  Google Scholar 

  • Chexal, K. K., Snipes, C., and Tamm, C., 1980, Biosynthesis of the antibiotic verrucarin E: Use of [1-13C]-, [2-13C]-, [1,2-13C]-and [2-13C., 22H3]-acetates, Helv. Chim. Acta 63:761–768.

    CAS  Google Scholar 

  • Chou, T. S., Eisenbraun, E. J., and Rapala, R. T., 1969, The chemistry of steroid acids from Cephalosporium acremonium, Tetrahedron 25:3341–3357.

    CAS  Google Scholar 

  • Ciegler, A., and Pitt, J. I., 1970, A survey of the genus Penicillium for tremorgenic toxin production, Mycopathol. Mycol. Appl. 42:119–124.

    PubMed  CAS  Google Scholar 

  • Ciegler, A., Fennell, D. I., MintzlafF, H.-J., and Leistner, L., 1972, Ochratoxin synthesis by Penicillium species, Naturwissenschaften 59:365–366.

    PubMed  CAS  Google Scholar 

  • Cockrum, P. A., Culvenor, C. C. J., Edgar, J. A., and Payne, A. L., 1979, Chemically different tremorgenic mycotoxins in isolates of Penicillium paxilli from Australia and North America, J. Nat. Prod. 42:534–536.

    PubMed  CAS  Google Scholar 

  • Cole, R. J., Kirksey, J. W., Moore, J. H., Blankenship, B. R., Diener, U. L., and Davis, N. D., 1972, Tremorgenic toxin from Penicillium verruculosum, Appl. Microbiol. 24:248–256.

    PubMed  CAS  Google Scholar 

  • Cole, R. J., Kirksey, J. W., and Wells, J. M., 1974, A new tremorgenic metabolite from Penicillium paxilli, Can. J. Microbiol. 20:1159–1162.

    PubMed  CAS  Google Scholar 

  • Cole, R. J., Kirksey, J. W., Cutler, H. G., Wilson, D. M., and Morgan-Jones, G., 1976a, Two toxic indole alkaloids from Penicillium islandicum, Can. J. Microbiol. 22:741–744.

    PubMed  CAS  Google Scholar 

  • Cole, R. J., Kirksey, J. W., Clardy, J., Eickman, M., Weinreb, S. M., Singh, P., and Kim, D., 1976b, Structure of rugulovasine-A and-B and 8-chlororugulovasine-A and-B, Tetrahedron Lett. 43:3849–3852.

    Google Scholar 

  • Cole, R. J., Dorner, J. W., Lansden, J. A., Cox, R. H., Pape, G, Cunfer, B., Nicholson, S. S., and Bedell, D. M., 1977, Paspalum staggers: Isolation and identification of tremorgenic metabolites from sclerotia of C. paspali, J. Agric. Food Chem. 25:1197–1201.

    PubMed  CAS  Google Scholar 

  • Cole, R. J., Dorner, J. W., Cox, R. H., Hill, R. A., Cluter, H. G., and Wells, J. M., 1981, Isolation of citreoviridin from Penicillium charlesii cultures and molded pecan fragments, Appl. Environ. Microbiol. 42:677–681.

    PubMed  CAS  Google Scholar 

  • Cole, R. J., Dorner, J. W., Cox, R. H., and Raymond, L. W., 1983, Two classes of alkaloid mycotoxins produced by Penicillium crustosum Thorn isolated from contaminated beer, J. Agric. Food Chem. 31:655–657.

    PubMed  CAS  Google Scholar 

  • Collins, R. P., 1976, Terpenes and odoriferous materials from microorganisms, Lloydia 39:20–24.

    CAS  Google Scholar 

  • Colombo, L., Gennari, C., Potenza, D., Scolastico, G, Aragozzini, F., and Gualandris, R., 1982, 6-Farnesyl-5,7-dihydroxy-4-methylphthalide oxidation mechanism in mycophenolic acid biosynthesis, J. Chem. Soc. Perkin Trans. 1 365-373.

    Google Scholar 

  • Corbett, R. E., Johnson, A. W., and Todd, A. R., 1950, Puberulic and puberulonic acids. II. Structure, J. Chem. Soc. 6-9.

    Google Scholar 

  • Cox, R. H., Hernandez, O., Dorner, J. W., Cole, R. J., and Fennell, D. I., 1979, A new isochroman mycotoxin isolated from Penicillium steckii, J. Agric. Food Chem. 27:999–1001.

    PubMed  CAS  Google Scholar 

  • Cram, D. J., 1948, Mold metabolites. II. The structure of sorbicillin, a pigment produced by the mold Penicillium notatum, J. Am. Chem. Soc. 70:4240–4243.

    PubMed  CAS  Google Scholar 

  • Cram, D. J., and Tishler, M., 1948, Mold metabolites. I. Isolation of several compounds from clinical penicillin, J. Am. Chem. Soc. 70:4238–4239.

    PubMed  CAS  Google Scholar 

  • Cunningham, K. G., and Freeman, G. G., 1953, The isolation and some chemical properties of viridicatin, a metabolic product of Penicillium viridicatum Westling, Biochem. J. 53:328–332.

    PubMed  CAS  Google Scholar 

  • Curtis, R. F., Hassall, C. H., and Nazar, M., 1968, The biosynthesis of phenols. XV. Some metabolites of Penicillium citrinum related to citrinin, J. Chem. Soc. C 85-93.

    Google Scholar 

  • Czech patent, 1982, Antibiotic citrinin by fermentation with Penicillium janthinellum, Chem. Abstr. 97:22,078.

    Google Scholar 

  • Dalziel, W., Hesp, B., Stevenson, K. M., and Jarvis, J. A. J., 1973, The structure and absolute configuration of the antibiotic aphidicolin: A tetracyclic diterpenoid containing a new ring system, J. Chem. Soc. Perkin Trans. 1 2841-2851.

    Google Scholar 

  • Damoglou, A. P., Downey, G. A., and Shannon, W., 1984, The production of ochratoxin A and citrinin in barley, J. Sci. Food Agric. 35:395–400.

    CAS  Google Scholar 

  • Day, J. B., and Mantle, P. G., 1982, Biosynthesis of radiolabeled verruculogen by Penicillium sim-plicissimum, Appl. Environ. Microbiol. 43:514–516.

    PubMed  CAS  Google Scholar 

  • Dean, F. M., Eade, R. A., Moubasher, R., and Robertson, A., 1957, The chemistry of fungi. 27. The structure of fulvic acid from Carpenteles brefeldianum, J. Chem. Soc. 3497-3510.

    Google Scholar 

  • De Jesus, A. E., Steyn, P. S., Vleggaar, R., Kirby, G. W., Varley, M. J., and Ferreira, N. P., 1981, Biosynthesis of α-cyclopiazonic acid: Steric course of proton removal during the cyclisation of β-cyclopiazonic acid in Penicillium griseofulvum, J. Chem. Soc. Perkin Trans. 1 3292-3294.

    Google Scholar 

  • De Jesus, A. E., Hull, W. E., Steyn, P. S., Van Heerden, F. R., and Vleggaar, R., 1982, Biosynthesis of viridicatumtoxin, a mycotoxin from Penicillium expansum, J. Chem. Soc. Chem. Commun. 902-904.

    Google Scholar 

  • De Jesus, A. E., Steyn, P. S., Van Heerden, F. R., Vleggaar, R., Wessels, P. L., and Hull, W. E., 1983a, Tremorgenic mycotoxins from Penicillium crustosum: Isolation of penitrems A-F and the structure elucidation and absolute configuration of penitrem A, J. Chem. Soc. Perkin Trans. 1 1847-1856.

    Google Scholar 

  • De Jesus, A. E., Steyn, P. S., Van Heerden, F. R., Vleggaar, R., Wessels, P. L., and Hull, W. E., 1983b, Tremorgenic mycotoxins from Penicillium crustosum: Structure elucidation and absolute configuration of penitrems B-F, J. Chem. Soc. Perkin Trans. 1 1857-1861.

    Google Scholar 

  • De Jesus, A. E., Gorst-Allman, C. P., Steyn, P. S., Van Heerden, F. R., Vleggaar, R., Wessels, P. L., and Hull, W. E., 1983c, Tremorgenic mycotoxins from Penicillium crustosum: Biosynthesis of penitrem A, J. Chem. Soc. Perkin Trans. 1 1863-1868.

    Google Scholar 

  • De Jesus, A. E., Steyn, P. S., and Van Heerden, F. R., 1983d, Structure of 7-de-O-methylsemivioxanthin, a metabolite of Penicillium janthinellum, S. Afr. J. Chem. 36:82–83.

    Google Scholar 

  • De Jesus, A. E., Steyn, P. S., Van Heerden, F. R., and Vleggaar, R., 1984, Structure elucidation of the janthitrems, novel tremorgenic mycotoxins from Penicillium janthinellum, J. Chem. Soc. Perkin Trans. 1 697-701.

    Google Scholar 

  • Dewar, M. J. S., 1945, Structure of stipitatic acid, Nature (London) 155:50–51.

    CAS  Google Scholar 

  • Di Menna, M. E., Mantle, P. G., and Mortimer, P. H., 1976, Experimental production of a staggers syndrome in ruminants by a tremorgenic Penicillium from soil, N. Z. Vet. J. 24:45–46.

    PubMed  Google Scholar 

  • Dimroth, P., Walter, H., and Lynen, F., 1970, Biosynthese von 6-Methylsalicylsäure, Eur. J. Biochem. 13:98–110.

    PubMed  CAS  Google Scholar 

  • Divekar, P. V., Brenneisen, P. E., and Tanenbaum, S. W., 1961, Stipitatic acid ethyl ester: A naturally occurring tropolone derivative, Biochim. Biophys. Acta 50:588–589.

    PubMed  CAS  Google Scholar 

  • Dix, D. T., Martin, J., and Moppett, C. E., 1972, Molecular structure of the metabolite lanosulin, J. Chem. Soc. Chem. Commun. 1168.

    Google Scholar 

  • Doerfler, D. L., Bird, B. A., and Campbell, I. M., 1981, N-Benzoylphenylalanine and N-ben-zoylphenylalaninol, and their biosynthesis in Penicillium brevicompactum, Phytochemistry 20:2303–2304.

    CAS  Google Scholar 

  • Dorner, J. W., Cole, R. J., Hill, R., Wicklow, D., and Cox, R. H., 1980, Penicillium rubrum and Penicillium biforme, new sources of rugulovasins A and B, Appl. Environ. Microbiol. 40:685–687.

    PubMed  CAS  Google Scholar 

  • Endo, A., Kuroda, M., and Tsujita, Y., 1976, ML-236 A, B, C., new inhibitors of cholesterogenesis produced by Penicillium citrinum, J. Antibiot. 29:1346–1348.

    PubMed  CAS  Google Scholar 

  • Fayos, J., Lokensgard, D., Clardy, J., Cole, R. J., and Kirksey, J. W., 1974, Structure of verruculogen, a tremor producing peroxide from Penicillium verruculosum, J. Am. Chem. Soc. 96:6785–6787.

    PubMed  CAS  Google Scholar 

  • Fletcher, L. R., and Harvey, I. C., 1981, An association of a Lolium endophyte with ryegrass staggers, N. Z. Vet. J. 29:185–186.

    PubMed  CAS  Google Scholar 

  • Forrester, P. I., and Gaucher, G. M., 1972a, Conversion of 6-methylsalicylic acid into patulin by Penicillium urticae, Biochemistry 11:1102–1107.

    PubMed  CAS  Google Scholar 

  • Forrester, P. I., and Gaucher, G. M., 1972b, m-Hydroxy benzyl alcohol dehydrogenase from Penicillium urticae, Biochemistry 11:1108–1114.

    PubMed  CAS  Google Scholar 

  • Framm, J., Nover, L., El Azzouny, A., Richter, H., Winter, K., Werner, S., and Luckner, M., 1973, Cyclopeptin und Dehydrocyclopeptin: Zwischenprodukte der Biosynthese von Alkaloiden der Cyclopenin-Viridicatin-Gruppe bei Penicillium cyclopium Westling, Eur. J. Biochem. 37:78–85.

    PubMed  CAS  Google Scholar 

  • Franck, B., 1980, The biosynthesis of the ergochromes, in: The Biosynthesis of Mycotoxins: A Study in Secondary Metabolism (P. S. Steyn, ed.), Academic Press, New York, pp. 157–191.

    Google Scholar 

  • Fujimoto, Y., Kamiya, M., Tsunoda, H., Ohtsubo, K., and Tatsuno, T., 1980, Recherche toxicologique des substances métaboliques de Penicillium carneo-lutescens, Chem. Pharm. Bull. 28:1062–1066.

    PubMed  CAS  Google Scholar 

  • Fujimoto, Y., Tsunoda, H., Uzawa, J., and Tatsuno, T., 1982, The structure of islandic acid, a new metabolite from Penicillium islandicum Sopp., J. Chem. Soc. Chem. Commun. 83-84.

    Google Scholar 

  • Fujimoto, Y., Takahashi, T., Yokoyama, E., Uzawa, J., Tsunoda, H., and Tatsuno, T., 1983, The isolation and structural elucidation of the antitumor metabolites produced by Penicillium diver sum var. aureum, Tennen Tuki Kagobutsu Toronkai Koen Toshishu 26:166–172.

    Google Scholar 

  • Furusaki, A., Matsumoto, T., Ogura, H., Takayanagi, H., Hirano, A., and Omura, S., 1980, X-ray crystal structure of herquline, a new biologically active piperazine from Penicillium herquei Fg-372, J. Chem. Soc. Chem. Commun. 698.

    Google Scholar 

  • Fuska, J., and Proksa, B., 1983, Chromatographie determination of vermiculine, Pharmazie 38:634–635.

    CAS  Google Scholar 

  • Fuska, J., Nemec, P., and Fuskova, A., 1979, Vermicillin, a new metabolite from Penicillium ver-miculatum inhibiting tumor cells in vitro, J. Antibiot. 32:667–669.

    PubMed  CAS  Google Scholar 

  • Gallagher, R. T., and Latch, G. C. M., 1977, Production of the tremorgenic mycotoxins verruculogen and fumitremorgin B by Penicillium piscarium Westling, Appl. Environ. Microbiol. 33:730–731.

    PubMed  CAS  Google Scholar 

  • Gallagher, R. T., White, E. P., and Mortimer, P. H., 1981, Ryegrass staggers: Isolation of potent neurotoxins lolitrem A and lolitrem B from staggers-producing pastures, N. Z. Vet. J. 29:189–190.

    PubMed  CAS  Google Scholar 

  • Gallagher, R. T., Hawkes, A. D., Steyn, P. S., and Vleggaar, R., 1984, Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: Structure elucidation of lolitrem B, J. Chem. Soc. Chem. Commun. 614-616.

    Google Scholar 

  • Ganguli, M., Burka, L. T., and Harris, T. M., 1984, Structural studies of the mycotoxin verrucosidin, J. Org. Chem. 49:3762–3766.

    CAS  Google Scholar 

  • Gatenbeck, S., 1957, 3-Hydroxyphthalic acid, a metabolite in Penicillium islandicum Sopp, Acta Chem. Scand. 11:555–557.

    CAS  Google Scholar 

  • Gatenbeck, S., 1959a, The occurrence of endocrocin in Penicillium islandicum, Acta Chem. Scand. 13:386–387.

    CAS  Google Scholar 

  • Gatenbeck, S., 1959b, Studies of mono-C-methylquinalizarins in relation to a phenolic metabolite of Penicillium islandicum, Acta Chem. Scand. 13:705–710.

    CAS  Google Scholar 

  • Gatenbeck, S., 1962, The mechanism of the biological formation of anthraquinones, Acta Chem. Scand. 16:1053–1054.

    CAS  Google Scholar 

  • Gatenbeck, S., and Lonnroth, I., 1962, The biosynthesis of gentisic acid, Acta Chem. Scand. 16:2298–2299.

    CAS  Google Scholar 

  • Gatenbeck, S., and Mahlen, A., 1964, The enzymic synthesis of spiculisporic acid, in: Proc. Congress Antibiotics, Prague, Butterworth, London, p. 540.

    Google Scholar 

  • Gatenbeck, S., and Mahlen, A., 1968, A metabolic variation in Penicillium spiculisporum Lehman. I. Production of (+) and (−)-decylcitric acids, Acta Chem. Scand. 22:2613–2616.

    PubMed  CAS  Google Scholar 

  • Gatenbeck, S., and Mosbach, K., 1963, The mechanism of biosynthesis of citromycetin, Biochem. Biophys. Res. Commun. 11:166–169.

    PubMed  CAS  Google Scholar 

  • German patent, 1984, Antibiotic compound, Chem. Abstr. 100:137, 374.

    Google Scholar 

  • Ghosh, A. C., and Ramgopal, M., 1980, Cyclic peptides from Penicillium islandicum: A review and a reevaluation of the structure of islanditoxin, J. Heterocycl. Chem. 18:1809–1812.

    Google Scholar 

  • Ghosh, A. C., Manmade, A., Kobbe, B., Townsend, J. M., and Demain, A. L., 1978, Production of luteoskyrin and isolation of a new metabolite, pibasterol, from Penicillium islandicum Sopp., Appl. Environ. Microbiol. 35:563–566.

    PubMed  CAS  Google Scholar 

  • Godin, P., 1955, Separation of chromatography on column of cellulose of phenolic substances produced by Penicillium brevi-compadum and the perfunctory chemical analysis of one of them, Antonie van Leeuwenhoek J. Microbiol. Serol. 21:362–366.

    CAS  Google Scholar 

  • Gorst-Allman, C. P., and Steyn, P. S., 1983, Biosynthesis of 5,6-dihydro-4-methoxy-2H-pyran-2-one in Penicillium italicum, S. Afr. J. Chem. 36:83–84.

    CAS  Google Scholar 

  • Gorst-Allman, C. P., Steyn, P. S., and Vleggaar, R., 1982, The biosynthesis of roquefortine: An investigation of acetate and mevalonate incorporation using high field NMR spectroscopy, J. Chem. Soc. Chem. Commun. 652-653.

    Google Scholar 

  • Gray, R. W., and Whalley, W. B., 1971, The chemistry of fungi. 63. Rubrorotiorin, a metabolite of Penicillium hirayamae, J. Chem. Soc. C 3575-3577.

    Google Scholar 

  • Gray, R. A., Gauger, G. W., Dulaney, E. L., Kaczka, E. A., and Woodruff, H. B., 1964, Hadacidin, a new plant-growth inhibitor produced by fermentation, Plant Physiol. 39:204–207.

    PubMed  CAS  Google Scholar 

  • Gudgeon, J. A., Holker, J. S. E., Simpson, T. J., and Young, K., 1979, The structures and biosynthesis of multicolanic, multicolic and multicolosic acids, novel tetronic acid metabolites of Penicillium multicolor, Bioorg. Chem. 8:311–322.

    CAS  Google Scholar 

  • Gyimesi, J., and Melera, A., 1967, On the structure of crotocin, an antifungal antibiotic, Tetrahedron Lett. 17:1665–1673.

    Google Scholar 

  • Haefliger, W., and Häuser, D., 1973, Isolierung und Strukturaufklärung von 11-Desacetoxy-wortmannin, Helv. Chim. Acta 56:2901–2904.

    PubMed  CAS  Google Scholar 

  • Hagedorn, I., Eholzer, U., and Luttringhaus, A., 1960, Beiträge zur Konstitutionsermittlung des Antibiotikums Xanthocillin, Chem. Ber. 93:1584–1590.

    CAS  Google Scholar 

  • Halsall, T. G., and Sayer, G. C., 1959, The chemistry of the triterpenes and related compounds. 35. Some non-acidic constituents, J. Chem. Soc. 2031-2036.

    Google Scholar 

  • Harris, C. M., Robertson, J. S., and Harris, T. M., 1976, Biosynthesis of griseofulvin, J. Am. Chem. Soc. 98:5380–5386.

    PubMed  CAS  Google Scholar 

  • Hattori, T., Igarashi, H., Iwasaki, S., and Okuda, S., 1969, Isolation of 3β-hydroxy-4β-methylfusida-17(20)[16,21-cis],24-diene(3β-hydroxy-protosta-17(20)[16,21-cis],24 diene) and a related triterpene alcohol, Tetrahedron Lett. 13:1023–1026.

    PubMed  Google Scholar 

  • Hermansen, K., Frisvad, J. C., Emborg, C., and Hansen, J., 1984, Cyclopiazonic acid production by submerged cultures of Penicillium and Aspergillus strains, FEMS Microbiol. Lett. 21:253–261.

    CAS  Google Scholar 

  • Hikino, H., Nabetani, S., and Takemoto, T., 1973, Structure and biosynthesis of chrysogine, a metabolite of Penicillium chrysogenum, Yakugaku Zasshi 93:619–623.

    PubMed  CAS  Google Scholar 

  • Hind, H. G., 1940a, The colouring matters of Penicillium carminoviolaceum Biourge, with a note on the production of ergosterol by this mould, Biochem. J. 34:67–72.

    PubMed  CAS  Google Scholar 

  • Hind, H. G., 1940b, The constitution of carviolin: A colouring matter of Penicillium carmino-violaceum Biourge, Biochem. J. 34:577–579.

    PubMed  CAS  Google Scholar 

  • Hodges, F. A., Zust, J. R., Smith, H. R., Nelson, A. A., Armbrecht, B. H., and Campbell, A. D., 1964, Mycotoxins: Aflatoxin isolated from Penicillium puberulum, Science 145:1439.

    PubMed  CAS  Google Scholar 

  • Hofle, G., and Roser, K., 1978, Structure of xanthomegnin and related pigments: Rein-vestigation by 13C nuclear magnetic resonance spectroscopy, J. Chem. Soc. Chem. Commun. 611-612.

    Google Scholar 

  • Holker, J. S. E., Ross, W. J., Staunton, J., and Whalley, W. B., 1962, The chemistry of fungi. 40. Further evidence for the structure of sclerotiorin, J. Chem. Soc. 4150-4154.

    Google Scholar 

  • Holker, J. S. E., Staunton, J., and Whalley, W. B., 1964, The biosynthesis of fungal metabolites. 1. Two different pathways to β-ketide chains in rotiorin, J. Chem. Soc. 16-22.

    Google Scholar 

  • Holzapfel, C. W., 1968, The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling, Tetrahedron 24:2101–2119.

    PubMed  CAS  Google Scholar 

  • Holzapfel, C. W., and Marsh, J. J., 1977, Isolation and structure of viridamine, a new nitrogenous metabolite of Penicillium viridicatum Westling, S. Afr. J. Chem. 30:197–204.

    CAS  Google Scholar 

  • Holzapfel, C. W., Hutchison, R. D., and Wilkins, D. C., 1970, The isolation and structure of two new indole derivatives from Penicillium cyclopium Westling, Tetrahedron 26:5239–5246.

    PubMed  CAS  Google Scholar 

  • Hossain, M. B., Eng-Wilmot, D. L., Loghry, R. A., and Van der Helm, D., 1980, Circular dichroism, crystal structure and absolute configuration of the siderophore ferric N,N,N-triacetylfusarinine, FeC39H57N6O15, J. Am. Chem. Soc. 102:5766.

    CAS  Google Scholar 

  • Howard, B. H., and Raistrick, H., 1950, Studies in the biochemistry of microorganisms. 81. The colouring matters of Penicillium islandicum Sopp. 2. Chrysophanic acid, 4,5-dihydroxy-2-methylanthraquinone, Biochem. J. 46:49–53.

    PubMed  CAS  Google Scholar 

  • Howard, C. C., Johnstone, R. A. W., King, T. J., and Lessinger, L., 1976, Fungal metabolites. VI. Crystal and molecular structure of secalonic acid A, J. Chem. Soc. Perkin Trans 1 1820-1822.

    Google Scholar 

  • Hutchison, R. D., Steyn, P. S., and Thompson, D. L., 1971, The isolation and structure of 4-hydroxyochratoxin A and 7-carboxy-3,4-dihydro-8-hydroxy-3-methylisocoumarin from Penicillium viridicatum, Tetrahedron Lett. 4033-4036.

    Google Scholar 

  • Isogai, A., Washizu, M., Murakoshi, S., and Suzuki, A., 1985, A new shikimate derivative, methyl 5-lactyl shikimate lactone, rom Penicillium sp., Agric. Biol. Chem. 49:167–169.

    CAS  Google Scholar 

  • Japanese patent, 1984, Oxathinecarboxylic acid and its derivatives, Chem. Abstr. 100:4785.

    Google Scholar 

  • Japanese patent, 1985, Production of the anti-cholesteremic agent ML-236b, Chem. Abstr. 102:77,263.

    Google Scholar 

  • Johnson, J. R., Kidwai, A. R., and Warner, J. S., 1953, Gliotoxin. XI. A related antibiotic from Penicillium terlikowski: Gliotoxin monoacetate, J. Am. Chem. Soc. 75:2110–2112.

    CAS  Google Scholar 

  • Kaczka, E. A., Gitterman, C. O., Dulaney, E. L., and Folkers, K., 1962, Hadacidin, a new growth-inhibitory substance in human tumor systems, Biochemistry 1:340–343.

    PubMed  CAS  Google Scholar 

  • Kalle, G. P., and Deo, Y. M., 1983, Effect of calcium on synthesis of dipicolinic acid in Penicillium citreoviride and its feedback resistant mutant, J. Biosci. 5:321–330.

    CAS  Google Scholar 

  • Kamal, A., Husain, S. A., Murtaza, N., Noorani, R., Qureshi, I. H., and Qureshi, A. A., 1970a, Studies in the biochemistry of microorganisms. 9. Structure of amudane, amudene and amujane, metabolic products of Penicillium martensii, Pak. J. Sci. Ind. Res. 13:240–243.

    CAS  Google Scholar 

  • Kamal, A., Jarboe, C. H., Qureshi, I. H., Husain, S. A., Murtaza, N., Noorani, R., and Qureshi, A. A., 1970b, Studies in the biochemistry of microorganisms. VIII. Isolation and characterisation of Penicillium martensii Biourge metabolic products: The structure of amudol, Pak. J. Sci. Ind. Res. 13:236–239.

    CAS  Google Scholar 

  • Kimura, Y., Suzuki, A., and Tamura, S., 1980, 13C-NMR spectra of pestalotin and its analogues, Agric. Biol. Chem. 44:451–452.

    CAS  Google Scholar 

  • King, G. S., Waight, E. S., Mantle, P. G., and Szczyrbak, C. A., 1977, The structure of clavicipitic acid, an azepinoindole derivative from Claviceps fusiformis, J. Chem. Soc. Perkin Trans. 1 2099-2103.

    Google Scholar 

  • King, T. J., Roberts, J. C., and Thompson, D. J., 1973, Studies in mycological chemistry. XXX. Isolation and structure of purpuride, a metabolite of Penicillium purpurogenum Stoll, J. Chem. Soc. Perkin Trans. 1 78-80.

    Google Scholar 

  • Kobayashi, K., and Ui, T., 1975, Isolation of phytotoxic substances produced by Cephalosporium gregatum Allington and Chamberlain, Tetrahedron Lett. 47:4119–4122.

    Google Scholar 

  • Kobayashi, K., and Ui, T., 1977, Graminin A, a new toxic metabolite from Cephalosporium gramineum Nisikado and Ikata, J. Chem. Soc. Chem. Commun. 774.

    Google Scholar 

  • Kobayashi, N., Iitaka, Y., Sankawa, U., Ogihara, Y., and Shibata, S., 1968, The crystal and molecular structure of a bromination product of tetrahydrorugulosin, Tetrahedron Lett. 58:6135–6138.

    Google Scholar 

  • Kozlovskii, A. G., and Reshetilova, T. A., 1984, Roquefortine biosynthesis in Penicillium culture, Mikrobiologiya 53:81–84.

    CAS  Google Scholar 

  • Kozlovskii, A. G., Soloveva, T. F., Reshetilova, T. A., and Skryabin, G. K., 1981a, Biosynthesis of roquefortine and 3,12-dihydroroquefortine by the culture of Penicillium farinosum, Experientia 37:472–473.

    CAS  Google Scholar 

  • Kozlovskii, A. G., Soloveva, T. F., Sakharovskii, V. G., and Actanin, V. M., 1981b, Biosynthesis of unusual ergot alkaloids by the mold Penicillium aurantiovirens, Dokl. Akad. Nauk SSSR 260:230–233.

    PubMed  CAS  Google Scholar 

  • Kozlovskii, A. G., Stefanova-Avramova, L., Reshetilova, T. A., Sakharovskii, V. G., and Actanin, V. M., 1981c, Clavine ergoalkaloids—metabolites of Penicillium gorlenkoanum, Prikl. Biokhim. Mikrobiol. 17:806–812.

    PubMed  CAS  Google Scholar 

  • Kozlovskii, A. G., Soloveva, T. F., Sakharovskii, V. G., and Actanin, V. M., 1982, Ergoalkaloids of agroclavine and epoxyagroclavine, metabolites of Penicillium corylophilum, Prikl. Biokhim. Mikrobiol. 18:535–541.

    PubMed  CAS  Google Scholar 

  • Kriegler, A. B., and Thomas, R., 1971, The biosynthetic interrelationships of fungal phenalenones, Chem. Commun. 738-739.

    Google Scholar 

  • Kuhr, I., Fuska, J., Sedmera, P., Podojil, M., Vokoun, J., and Vanek, Z., 1973, Antitumor antibiotic produced by Penicillium stipitatum: Its identity with duclauxin, J. Antibiot. 26:535–536.

    PubMed  CAS  Google Scholar 

  • Kurobane, I., Hutchinson, C. R., and Vining, L. C., 1981, The biosynthesis of fulvic acid, a fungal metabolite of heptaketide origin, Tetrahedron Lett. 22:493–496.

    CAS  Google Scholar 

  • Lafont, P., Debeaupuis, J.-P., Gaillardin, M., and Payen, J., 1979, Production of mycophenolic acid by Penicillium roqueforti strains, Appl. Environ. Microbiol. 37:365–368.

    PubMed  CAS  Google Scholar 

  • Lanigan, G. W., Payne, A. L., and Cockrum, P. A., 1979, Production of tremorgenic toxins by Penicillium janthinellum Biourge: A possible aetiological factor in ryegrass staggers, Aust. J. Exp. Biol. Med. Sci. 57:31–37.

    PubMed  CAS  Google Scholar 

  • Latch, G. C. M., Christensen, M. J., and Samuels, G. J., 1984, Five endophytes of Lolium and Festuca in New Zealand, Mycotaxon 20:535–550.

    Google Scholar 

  • Laws, I., 1985, Biosynthesis and metabolism of indolic fungal metabolites, Ph.D. thesis, University of London.

    Google Scholar 

  • Laws, I., and Mantle, P. G., 1985, Nigrifortine, a diketopiperazine metabolite of Penicillium nigricans, Phytochemistry 24:1395–1397.

    CAS  Google Scholar 

  • Leistner, L., and Pitt, J. I., 1977, Miscellaneous Penicillium toxins in: Mycotoxins in Human and Animal Health (J. V. Rodricks, C. W. Hesseltine, and M. A. Mehlman, eds.), Pathotox, Illinois, pp. 645–649.

    Google Scholar 

  • Ljungcrantz, I., and Mosbach, K., 1964, Synthesis of four ethyl-dimethyl-benzenetriols in relation to a new phenolic metabolite of Penicillium baarnense, Acta Chem. Scand. 18:638–642.

    CAS  Google Scholar 

  • Locci, R., Merlini, L., Hasini, G., and Locci, J. R., 1967, Mitorubrinic acid and related compounds from a strain of Penicillium funiculosum Thorn, G. Microbiol. 15:93–102.

    Google Scholar 

  • Lowe, G., Taylor, A., and Vining, L. C., 1966, Sporidesmins. IV. Isolation and structure of dehydrogliotoxin, a metabolite of Penicillium terlikowskii, J. Chem. Soc. C 1799-1803.

    Google Scholar 

  • Luckner, M., 1967, Zur Bildung von Chinolinalkaloiden in Pflanzen. 2. Die fermentative Umwandlung der Penicillium-Alkaloide Cyclopenin und Cyclopenol in Viridicatin und Viridicatol, Eur. J. Biochem. 2:74–78.

    PubMed  CAS  Google Scholar 

  • Lybing, S., and Reio, L., 1958, Degradation of 14C-labelled carolic and carlosic acids from Penicillium charlesii G. Smith, Acta Chem. Scand. 12:1575–1584.

    CAS  Google Scholar 

  • Mabelis, R. P., Ratcliffe, A. H., Ackland, M. J., Hanson, J. R., and Hitchcock, P. B., 1981, Structure of thiobiscephalosporide-A, a macrolide from Cephalosporium aphidicola, J. Chem. Soc. Chem. Commun. 1006-1007.

    Google Scholar 

  • MacMillan, J., 1953, Griseofulvin. 7. Dechlorogriseofulvin, J. Chem. Soc. 1967-1702.

    Google Scholar 

  • MacMillan, J., 1954, Griseofulvin. 9. Isolation of the bromo-analogue from Penicillium griseofulvum and Penicillium nigricans, J. Chem. Soc. 2585-2587.

    Google Scholar 

  • MacMillan, J., Vanstone, A. E., and Yeboah, S. K., 1972, Fungal products. III. Structure of wortmannin and some hydrolysis products, J. Chem. Soc. Perkin Trans. 1 2898-2903.

    Google Scholar 

  • MacMillan, J. G., Springer, J. P., Clardy, J., Cole, R. J., and Kirksey, J. W., 1976, Structure and synthesis of verruculotoxin, a new mycotoxin from Penicillium verruculosum Peyronel, J. Am. Chem. Soc. 98:246–247.

    PubMed  CAS  Google Scholar 

  • Mahmoodian, A., and Stickings, C. E., 1964, Studies in the biochemistry of micro-organisms. 115. Metabolites of Penicillium fréquentons Westling: Isolation of sulochrin, asterric acid, (+)-bisdechlorogeodin and two new substituted anthraquinones, questin and questinol, Biochem. J. 92:369–378.

    PubMed  CAS  Google Scholar 

  • Mantle, P. G., Day, J. B., Haigh, C. R., and Penny, R. H. C., 1978, Tremorgenic mycotoxins and incoordination syndromes, Vet. Rec. 103:403.

    PubMed  CAS  Google Scholar 

  • Mantle, P. G., Perera, K. P. W. C., Maishman, N.J., and Mundy, G. R., 1983, Biosynthesis of penitrems and roquefortine by Penicillium crustosum, Appl. Environ. Microbiol. 45:1486–1490.

    PubMed  CAS  Google Scholar 

  • Mantle, P. G., Laws, I., Tan, M. J. L., and Tizard, M., 1984, A novel process for the production of penitrem mycotoxins by submerged fermentation of Penicillium nigricans, J. Gen. Microbiol. 130:1293–1298.

    PubMed  CAS  Google Scholar 

  • Mantle, P. G., and Shipston, N. F., 1987, Temporal separation of steps in the biosynthesis of verruculogen, Biochem. Int. (in press).

    Google Scholar 

  • Marumo, S., 1959, Islanditoxin, a toxic metabolite produced by Penicillium islandicum Sopp, Bull. Agric. Chem. Soc. Jpn. 23:428–437.

    CAS  Google Scholar 

  • McCapra, F., Scott, A. I., Delmotte, P., Delmotte-Plaquée, J., and Bhacca, N. S., 1964, The constitution of monorden, an antibiotic with tranquilising action, Tetrahedron Lett. 15:869–875.

    Google Scholar 

  • McCorkindale, N. J., and Baxter, R. L., 1981, Brevigellin, a benzoylated cyclodepsipeptide from Penicillium brevicompactum, Tetrahedron 37:1795–1801.

    CAS  Google Scholar 

  • McCorkindale, N.J., Wright, J. L. C., Brain, P. W., Clarke, S. M., and Hutchinson, S. A., 1968, Canadensolide—an antifungal metabolite of Penicillium canadense, Tetrahedron Lett. 6:727–730.

    PubMed  CAS  Google Scholar 

  • McCorkindale, N. J., Roy, T. P., and Hutchinson, S. A., 1972, Isolation and synthesis of 3-chlorogentisyl alcohol—a metabolite of Penicillium canadense, Tetrahedron 28:1107–1111.

    CAS  Google Scholar 

  • McCorkindale, N. J., Baxter, R. L., Roy, T. P., Shields, H. S., Stewart, R. M., and Hutchinson, S. A., 1978a, Synthesis and chemistry of N-benzoyl-o-[N′-benzoyl-l-phenylalanyl]-1-phenylalaninol, the major mycelial metabolite of Penicillium canadense, Tetrahedron 34:2791–2795.

    CAS  Google Scholar 

  • McCorkindale, N. J., Blackstock, W. P., Johnston, G. A., Roy, T. P., and Troke, J. A., 1978b, The biosynthesis of canadensolide, ethisolide and related metabolites, in: 11th IUPAC International Symposium on Chemistry of Natural Products: Symposium Papers, Vol. 1 (R. Vlahov, ed.), Bulgarian Academy of Sciences, Bulgaria, pp. 151–154.

    Google Scholar 

  • McCorkindale, N. J., Calzadilla, C. H., and Baxter, R. L., 1981, Biosynthesis of pebrolide, Tetrahedron 37:1991–1993.

    CAS  Google Scholar 

  • McGahren, W. J., Ellestad, G. A., Morton, G. O., Kunstmann, M. P., and Mullen, P., 1973, A new fungal lactone, LL-P880β, and a new pyrone, LL-P880γ, from a Penicillium sp., J. Org. Chem. 38:3542–3544.

    PubMed  CAS  Google Scholar 

  • McMaster, W. J., Scott, A. I., and Trippett, S., 1960, Metabolic products of Penicillium patulum, J. Chem. Soc. 4628-4631.

    Google Scholar 

  • Merlini, L., Nasini, G., and Selva, A., 1970, The structure of funicone, a new metabolite from Penicillium funiculosum Thorn, Tetrahedron 26:2739–2749.

    PubMed  CAS  Google Scholar 

  • Michel, K. H., Chaney, M. O., Jones, N. D., Hoehn, M. M., and Nagarajan, R., 1974, Epipolythiopiperazinedione antibiotics from Penicillium turbatum, J. Antibiot. 27:57–64.

    PubMed  CAS  Google Scholar 

  • Michel, K. H., Demarco, P. V., and Nagarajan, R., 1977, The isolation and structure elucidation of macrocyclic lactone antibiotic A26771B, J. Antibiot. 30:571–575.

    PubMed  CAS  Google Scholar 

  • Minato, S., 1979, Isolation of anthglutin, an inhibitor of γ-glutamyl transpeptidase from Penicillium oxalicum, Arch. Biochem. Biophys. 192:235–240.

    PubMed  CAS  Google Scholar 

  • Miyao, K., 1960, The structure of fungisporin, Bull. Agric. Chem. Soc. Jpn. 24:23–30.

    CAS  Google Scholar 

  • Mizuno, K., Tsujino, M., Takada, M., Hayashi, M., Atsumi, K., Asano, K., and Matsuda, T., 1974, Studies on bredinin. I. Isolation, characterisation and biological properties, J. Antibiot. (Tokyo) 27:775–782.

    CAS  Google Scholar 

  • Mohammed, Y. S., and Luckner, M., 1963, The structure of cyclopenin and cyclopenol, metabolic products from Penicillium cyclopium Westling and Penicillium viridicatum Westling, Tetrahedron Lett. 28:1953–1958.

    Google Scholar 

  • Moore, R. E., and Emery, T., 1976, N-Acetylfusarinines: Isolation, characterisation and properties, Biochemistry 15:2719–2733.

    PubMed  CAS  Google Scholar 

  • Moreau, S., Biguet, J., Lablache-Combier, A., Baert, F., Foulon, M., and Delfosse, C., 1980, Structures et stéréochimie des sesquiterpenes de Penicillium roqueforti, PR toxine et eremefortines A, B, C, D, E, Tetrahedron 36:2989–2997.

    CAS  Google Scholar 

  • Mosbach, K., 1960, Die Biosynthese der Orsellinsäure und Penicillinsäure, Acta Chem. Scand. 14:457–464.

    CAS  Google Scholar 

  • Moss, M. O., Wood, A. B., and Robinson, F. V., 1969, The structure of rubratoxin A, a toxic metabolite of Penicillium rubrum, Tetrahedron Lett. 5:367–370.

    PubMed  Google Scholar 

  • Mull, R. P., Townley, R. W., and Scholz, C. R., 1945, Production of gliotoxin and a second active isolate by Penicillium obscurum Biourge, J. Am. Chem. Soc. 67:1626–1627.

    CAS  Google Scholar 

  • Murphy, G., and Lynen, F., 1975, Patulin biosynthesis: The metabolism of m-hydroxybenzyl alcohol and m-hydroxybenzaldehyde, Eur. J. Biochem. 58:467–475.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Vogel, G., Krippahl, G., and Lynen, F., 1974, Patulin biosynthesis: The role of mixed function oxidases in the hydroxylation of m-cresol, Eur. J. Biochem. 49:443–455.

    PubMed  CAS  Google Scholar 

  • Nagel, D. W., Steyn, P. S., and Scott, D. B., 1972, Production of citreoviridin by Penicillium pulvillorum, Phytochemistry 11:627–630.

    CAS  Google Scholar 

  • Nagel, D. W., Pachler, K. G. R., Steyn, P. S., Vleggaar, R., and Wessels, P. L., 1976, The chemistry and 13C NMR assignments of oxaline, a novel alkaloid from Penicillium oxalicum, Tetrahedron 32:2625.

    CAS  Google Scholar 

  • Nakajima, S., and Nozawa, K., 1979, Isolation in high yield of citrinin from Penicillium odoratum and of mycophenolic acid from Penicillium brunneo-stoloniferum, J. Nat. Prod. 42:423–426.

    CAS  Google Scholar 

  • Nakakita, Y., Shima, S., and Sakai, H., 1984a, Isolation of curvulic acid as an antimicrobial substance from Penicillium janthinellum C-268, Agric. Biol. Chem. 48:1899–1900.

    CAS  Google Scholar 

  • Nakakita, Y., Yomosa, K., Hirota, A., and Sakai, H., 1984b, Isolation of a novel phenolic compound from Penicillium janthinellum Biourge, Agric. Biol. Chem. 48:239–240.

    CAS  Google Scholar 

  • Narasimhachari, N., and Vining, L. C., 1963, Studies on the pigments of Penicillium herquei, Can. J. Chem. 41:641–648.

    CAS  Google Scholar 

  • Narasimhachari, N., Gopalkrishnan, K. S., Haskins, R. H., and Vining, L. C., 1963, The production of the antibiotic atrovenetin by a strain of Penicillium herquei, Can. J. Microbiol. 9:134–136.

    CAS  Google Scholar 

  • Niwa, M., Ogiso, S., Endo, T., Furukawa, H., and Yamamura, S., 1980, Isolation and structure of citreopyrone, a metabolite of Penicillium citreo-viride Biourge, Tetrahedron Lett. 21:4481–4482.

    CAS  Google Scholar 

  • Niwa, M., Endo, T., Ogiso, S., Furukawa, H., and Yamamura, S., 1981, Two new pyrones, metabolites of Penicillium citreoviride Biourge, Chem. Lett. 1285-1288.

    Google Scholar 

  • Nozawa, K., and Nakajima, S., 1979, Isolation of radicicol from Penicillium luteo-aurantium, and meleagrin, a new metabolite, from Penicillium meleagrinum, J. Nat. Prod. 42:374–377.

    CAS  Google Scholar 

  • Nozoe, S., Morisaki, M., Tsuda, K., Iitaka, Y., Takahashi, N., Tamura, S., Ishibashi, K., and Shirasaka, M., 1965, The structure of ophiobolin, a C25 terpenoid having a novel skeleton, J. Am. Chem. Soc. 87:4968–4970.

    PubMed  CAS  Google Scholar 

  • Ogihara, Y., Kobayashi, N., and Shibata, S., 1968, Further studies on the bianthraquinones of Penicillium islandicum Sopp, Tetrahedron Lett. 15:1881–1886.

    Google Scholar 

  • Ohmomo, S., Sato, T., Utagawa, T., and Abe, M., 1975, Isolation of festuclavine and three new indole alkaloids, roquefortine A, B, and C., from the cultures of Penicillium roqueforti, Agric. Biol. Chem. 39:1333–1334.

    CAS  Google Scholar 

  • Ohmomo, S., Miyazaki, K., Ohashi, T., and Abe, M., 1977, On the mechanism for the formation of indole alkaloids in Penicillium concavo-rugulosum, Agric. Biol. Chem. 41:1707–1710.

    CAS  Google Scholar 

  • Ohmomo, S., Oguma, K., Ohashi, T., and Abe, M., 1978, Isolation of a new indole alkaloid, roquefortine D, from cultures of Penicillium roqueforti, Agric. Biol. Chem. 42:2387–2389.

    CAS  Google Scholar 

  • Ohmomo, S., Oshashi, T., and Abe, M., 1980, Isolation of biogenetically correlated four alkaloids from the cultures of Penicillium corymbiferum, Agric. Biol. Chem. 44:1929–1930.

    CAS  Google Scholar 

  • Okuda, S., Iwasaki, S., Tsuda, K., Sano, Y., Hata, T., Udagawa, S., Nakayama, Y., and Yamaguchi, H., 1964, The structure of helvolic acid, Chem. Pharm. Bull. (Tokyo) 12:121–124.

    CAS  Google Scholar 

  • Okuda, S., Nakyama, Y., and Tsuda, K., 1966, Studies on microbial products I: Helvolic acid and related compounds. I. 7-Desacetoxyhelvolic acid and helvolinic acid, Chem. Pharm. Bull. (Tokyo) 14:436–441.

    CAS  Google Scholar 

  • Okuda, S., Sato, Y., Hattori, T., and Igarashi, H., 1968a, Isolation of 3β-hydroxy-4β-hydroxymethylfusida-17(20),[16,21-cis],24-diene, Tetrahedron Lett. 47:4769–4772.

    Google Scholar 

  • Okuda, S., Sato, Y., Hattori, T., and Wakabayashi, M., 1968b, Isolation and structural elucidation of 3-oxo-16β-acetoxyfusida-l,17(20)[16,21-cis],24-trien-21-oic acid, Tetrahedron Lett. 47:4847–4850.

    Google Scholar 

  • Okuda, T., Yokose, K., Furumai, T., and Maruyama, H. B., 1984, Penitricin, a new class of antibiotic produced by Penicillium aculeatum. II. Isolation and characterisation, J. Antibiot. 37:718–722.

    PubMed  CAS  Google Scholar 

  • Okuyama, E., Yamazaki, M., Kobayashi, K., and Sakurai, T., 1983, Paraherquonin, a new meroterpenoid from Penicillium paraherquei, Tetrahedron Lett. 24:3113–3114.

    CAS  Google Scholar 

  • Olivigni, F. J., and Bullerman, L. B., 1978, Production of penicillic acid and patulin by an atypical Penicillium roqueforti isolate, Appl. Environ. Microbiol. 35:435–438.

    PubMed  CAS  Google Scholar 

  • Omura, S., Nakagawa, A., Sekikawa, K., Otani, M., and Hata, T., 1969, Studies on cerulenin. VI. Some spectroscopic features of cerulenin, Chem. Pharm. Bull. 17:2361–2363.

    PubMed  CAS  Google Scholar 

  • Ooyama, J., Nakamura, N., and Tanabe, O., 1960, Biosynthesis of dipicolinic acid by a Penicillium sp., Bull. Agric. Chem. Soc. Jpn. 24:743–744.

    Google Scholar 

  • Oxford, A. E., and Raistrick, H., 1933, Studies in the biochemistry of microorganisms XXX: The molecular constitution of the metabolic products of Penicillium brevi-compactum and related species. I. The acids C10H10O5, C10H10O6 and C10H10O7, Biochem. J. 27:634–653.

    PubMed  CAS  Google Scholar 

  • Oxford, A. E., and Raistrick, H., 1948, Studies in the biochemistry of microorganisms. 76. Mycelianamide, C22H28O5N2, a metabolic product of Penicillium griseofulvum Dierckx. I. Preparation, properties and breakdown products, Biochem. J. 42:323–329.

    CAS  Google Scholar 

  • Oyama, H., Sassa, T., and Ikeda, M., 1978, Structures of new plant growth inhibitors, trans-and cis-resorcylide, Agric. Biol. Chem. 42:2407–2409.

    CAS  Google Scholar 

  • Patterson, D. S. P., Roberts, B. A., Shreeve, B. J., McDonald, S. M., and Hayes, A. W., 1979, Tremorgenic toxins produced by soil fungi, Appl. Environ. Microbiol. 37:172–173.

    PubMed  CAS  Google Scholar 

  • Patterson, D. S. P., Shreeve, B. J., Roberts, B. A., and MacDonald, S. M., 1981, Verruculogen produced by soil fungi in England and Wales, Appl. Environ. Microbiol. 42:916–917.

    PubMed  CAS  Google Scholar 

  • Pettersson, G., 1965a, Biosynthesis of spinulosin in Penicillium spinulosum, Acta Chem. Scand. 19:1016–1017.

    PubMed  CAS  Google Scholar 

  • Pettersson, G., 1965b, The biosynthesis of flavipin. II. Incorporation of aromatic precursors, Acta Chem. Scand. 19:1724–1732.

    PubMed  CAS  Google Scholar 

  • Pfeifer, S., Bar, H., and Zarnack, J., 1972, Uber Stoffwechselprodukte der Xanthocillin bildenden Mutante von Penicillium notatum Westl., Pharmazie 27:536–542.

    PubMed  CAS  Google Scholar 

  • Pitt, J. I., 1979a, The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces, Academic Press, London.

    Google Scholar 

  • Pitt, J. I., 1979b, Penicillium crustosum and P. simplicissimum, the correct names for two common species producing tremorgenic mycotoxins, Mycologia 71:1166–1177.

    Google Scholar 

  • Polonsky, J., Merrien, M.-A., Prange, T., Pascard, C., and Moreau, S., 1980, Isolation and structure (X-ray analysis) of marcfortine A, a new alkaloid from Penicillium roqueforti, J. Chem. Soc. Chem. Commun. 601-602.

    Google Scholar 

  • Posternak, T., 1940, Recherches sur la biochemie des champignons inférieurs. 4. Sur le pigment de Penicillium roseopurpureum, Helv. Chim. Acta 23:1046–1053.

    CAS  Google Scholar 

  • Prange, T., Billion, M.-A., Vuilhorgne, M., Pascard, C., and Polonsky, J., 1981, Structures of marcfortine B and C (X-ray analysis), alkaloids from Penicillium roqueforti, Tetrahedron Lett. 22:1977–1980.

    CAS  Google Scholar 

  • Price, M. J., and Worth, G. K., 1974, The occurrence of ergosta-4,6,8(14),22-tetraen-3-one in several fungi, Aust. J. Chem. 27:2505–2507.

    CAS  Google Scholar 

  • Probst, A., and Tamm, C., 1981, Biosynthesis of cytochalasin: Biosynthetic studies on chaetoglobosin A and 19-O-acetylchaetoglobosin A, Helv. Chim. Acta 64:2065–2077.

    CAS  Google Scholar 

  • Quick, A., Thomas, R., and Williams, D. J., 1980, X-ray crystal structure and absolute configuration of the fungal phenalenone herqueinone, J. Chenu Soc. Chem. Commun. 1051-1053.

    Google Scholar 

  • Qureshi, I. H., Begum, T., and Murtaza, N., 1980, Isolation and identification of the metabolic products of Penicillium funiculosum Thorn. The chemistry of funiculosic acid, Pak. J. Sci. Ind. Res. 23:16–20.

    CAS  Google Scholar 

  • Raistrick, H., and Rice, F. A. H., 1971, 2,3-Dihydro-3,6-dihydroxy-2-methyl-4-pyrone and cur-vularin from Penicillium gilmanii, J. Chem. Soc. C 3069-3070.

    Google Scholar 

  • Raistrick, H., and Ross, D. J., 1952, Studies in the biochemistry of micro-organisms. 87. Dihydrogladiolic acid, a metabolic product of Penicillium gladioli Machacek, Biochem. J. 50:635–647.

    PubMed  CAS  Google Scholar 

  • Raistrick, H., and Stossl, A., 1958, Studies in the biochemistry of micro-organisms. 104. Metabolites of Penicillium atrovenetum G. Smith: β-Nitropropionic acid, a major metabolite, Biochem. J. 68:647–653.

    PubMed  CAS  Google Scholar 

  • Raju, M. S., Wu, G.-S., Gard, A., and Rosazza, J. P., 1982, Microbial transformations of natural antitumor agents. 20. Glucosylation of viridicatum toxin, J. Nat. Prod. 45:321–327.

    CAS  Google Scholar 

  • Rebstock, M. C., 1964, A new metabolite of patulin-producing Penicillia, Arch. Biochem. Biophys. 104:156–159.

    PubMed  CAS  Google Scholar 

  • Rebuffat, S., Davoust, D., Molho, L., and Molho, D., 1980, La citreomontanine, nouvelle α-pyrone polyéthylénique isolée de Penicillium pedemontanum, Photochemistry 19:427–431.

    CAS  Google Scholar 

  • Rebuffat, S., Davoust, D., and Molho, D., 1981, Biosynthesis of citreomontanin in Penicillium pedemontanum, Phytochemistry 20:1279–1281.

    CAS  Google Scholar 

  • Renauld, F., Moreau, S., and Lablache-Combier, A., 1984, Biosynthese de la botryodiplodine, mycotoxine de Penicillium roqueforti: Incorporations d’acetate [1-13C], [2-13C], [1-2-13C] et d’acide orsellinique [2-13C-carboxyle 13C], [3-413C], Tetrahedron 40:1823–1834.

    CAS  Google Scholar 

  • Rhodes, A., Boothroyd, B., McGonagle, M. P., and Somerfield, G. A., 1961, Biosynthesis of griseofulvin: The methylated benzophenone intermediates, Biochem. J. 81:28–37.

    PubMed  CAS  Google Scholar 

  • Rice, F. A. H., 1971, The structure of leucogenol, J. Chem. Soc. C 2599-2606.

    Google Scholar 

  • Robbers, J. E., Straus, J. W., and Tuite, J., 1975, The isolation of brevianamide A from Penicillium ochraceum, Lloydia 38:355–366.

    PubMed  CAS  Google Scholar 

  • Roberts, J. C., and Thompson, D. J., 1971, Studies in mycological chemistry. 27. Rein-vestigation of the structure of purpurogenone, a metabolite of Penicillium purpurogenum Stoll, J. Chem. Soc. C 3488-3495.

    Google Scholar 

  • Rowan, D. D., Hunt, M. B., and Gaynor, D. L., 1986, Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae, J. Chem. Soc. Chem. Commun. 935-936.

    Google Scholar 

  • Sakabe, N., Goto, T., and Hirata, Y., 1977, Structure of citreoviridin, a mycotoxin produced by Penicillium citreoviride molded on rice, Tetrahedron 33:3077–3081.

    CAS  Google Scholar 

  • Sankawa, U., Taguchi, H., Ogihara, Y., and Shibata, S., 1966, Biosynthesis of duclauxin, Tetrahedron Lett. 25:2883–2886.

    PubMed  CAS  Google Scholar 

  • Sankawa, U., Shimada, H., Sato, T., Kinoshita, T., and Yamasaki, K., 1977, Biosynthesis of scytalone, Tetrahedron Lett. 5:483–486.

    Google Scholar 

  • Sassa, T., Takemura, T., Ikeda, M., and Miura, Y., 1973, Structure of radiclonic acid, a new plant growth-regulator produced by a fungus, Tetrahedron Lett. 26:2333–2334.

    Google Scholar 

  • Sassa, T., Niwa, G., Unno, H., Ikeda, M., and Miura, Y., 1974, Structure of penicillide, a new metabolite produced by a Penicillium sp., Tetrahedron Lett. 45:3941–3942.

    Google Scholar 

  • Sassa, T., Nakano, K., and Miura, Y., 1975, Isolation and identification of O-acetyl and 12-hydroxyradiclonic acids, Agric. Biol. Chem. 39:1899–1900.

    CAS  Google Scholar 

  • Scott, A. I., and Beadling, L., 1974, Biosynthesis of patulin: Dehydrogenase and dioxygenase enzymes of Penicillium patulum, Bioorg. Chem. 3:281–301.

    CAS  Google Scholar 

  • Scott, A. I., Phillips, G. T., and Kircheis, U., 1971, Biosynthesis of polyketides: Synthesis of 6-methylsalicyclic acid and triacetic acid lactone in Penicillium patulum, Bioorg. Chem. 1:380–399.

    CAS  Google Scholar 

  • Scott, A. I., Zamir, L., Phillips, G. T., and Yalpani, M., 1973, Biosynthesis of patulin, Bioorg. Chem. 2:124–139.

    CAS  Google Scholar 

  • Scott, P. M., 1977, Penicillium mycotoxins, in: Mycotoxic Fungi, Mycotoxins, Mycotoxicoses, Vol. I (T. D. Wyllie and L. G. Morehouse, eds.), Marcel Dekker, New York, pp. 283–356.

    Google Scholar 

  • Scott, P. M., Kennedy, B., and Van Walbeek, W., 1972, Desoxypatulinic acid from a patulin-producing strain of Penicillium patulum, Experientia 28:1252.

    PubMed  CAS  Google Scholar 

  • Scott, P. M., Kennedy, B. P. C., Harwig, J., and Chen, Y. K., 1974, Formation of diketopiperazines by Penicillium italicum isolated from oranges, Appl. Microbiol. 28:892.

    PubMed  CAS  Google Scholar 

  • Scott, P. M., Merrien, M.-A., and Polonsky, J., 1976, Roquefortine and isofumigaclavine A, metabolites of Penicillium roqueforti, Experientia 32:140–142.

    CAS  Google Scholar 

  • Sedmera, P., Podojil, M., Cokown, J., Bellina, V., and Memec, P., 1978, 2,2′-Dimethoxy-4a,4a′-dehydrorugulosin (rugulin), Folia Microbiol. (Prague) 23:64–67.

    CAS  Google Scholar 

  • Segal, W., 1959, Stipitatonic acid: A new mould tropolone from Penicillium stipitatum Thorn, J. Chem. Soc. 2847-2851.

    Google Scholar 

  • Sekiguchi, J., and Gaucher, G. M., 1979a, Isoepoxydon, a new metabolite of the patulin pathway in Penicillium urticae, Biochem. J. 182:445–453.

    PubMed  CAS  Google Scholar 

  • Sekiguchi, J., and Gaucher, G. M., 1979b, Patulin biosynthesis: The metabolism of phyllostine and isoepoxydon by cell-free preparations from Penicillium urticae, Can. J. Microbiol. 25:881–887.

    PubMed  CAS  Google Scholar 

  • Sekiguchi, J., Gaucher, G. M., and Yamada, Y., 1979, Biosynthesis of patulin in Penicillium urticae: Identification of isopatulin as a new intermediate, Tetrahedron Lett. 1:41–42.

    Google Scholar 

  • Sekiguchi, J., Shimamato, T., Yamada, Y., and Gaucher, G. M., 1983, Patulin biosynthesis: Enzymatic and nonenzymatic transformations of the mycotoxin (E)-ascladiol, Appl. Environ. Microbiol. 45:1939–1942.

    PubMed  CAS  Google Scholar 

  • Sekiguchi, J., Kuroda, H., Yamada, Y., and Okada, H., 1985, Structure of patulolide A, a new metabolite from Penicillium urticae mutants, Tetrahedron Lett. 26:2341–2342.

    CAS  Google Scholar 

  • Seo, S., Sankawa, U., Ogihara, Y., Iitaka, Y., and Shibata, S., 1973, Studies on fungal metabolites. 32. A renewed investigation on flavoskyrin and its analogues, Tetrahedron 29:3721–3726.

    CAS  Google Scholar 

  • Seto, H., and Tanabe, M., 1974, Utilization of 13C-13C coupling in structural and biosynthetic studies: Ochrephilone—a new fungal metabolite, Tetrahedron Lett. 8:651–654.

    Google Scholar 

  • Shibata, S., and Udagawa, S., 1963, Metabolic products of fungi. 19. Isolation of rugulosin from Penicillium brunneum, Chem. Pharm. Bull. 11:402–403.

    CAS  Google Scholar 

  • Shibata, S., Sankawa, U., Taguchi, H., and Yamasaki, K., 1966, Biosynthesis of natural products. 3. Biosynthesis of erythroskyrin, a coloring matter of Penicillium islandicum Sopp., Chem. Pharm. Bull. 14:474–478.

    PubMed  CAS  Google Scholar 

  • Shizuri, Y., Niwa, M., Furukawa, H., and Yamamura, S., 1983, Isolation and structure of citreothiolactone, a novel metabolite of Penicillium citreoviride, Tetrahedron Lett. 24:1053–1054.

    CAS  Google Scholar 

  • Shizuri, Y., Kosemura, S., Yamamura, S., Furukawa, H., Kawai, K., and Okada, N., 1984a, Biosynthesis of citreothiolactone, citreopyrone and pyrenocine B, Tetrahedron Lett. 25:1583–1584.

    CAS  Google Scholar 

  • Shizuri, Y., Nishiyama, S., Imai, D., Yamamura, S., Furukawa, H., Kawai, K., and Okada, N., 1984b, Isolation and stereostructures of citreoviral, citreodiol and epicitreodiol, Tetrahedron Lett. 25:4771-4774.

    Google Scholar 

  • Sigg, H. P., 1963, Die Konstitution von Frequentin, Helv. Chim. Acta 46:1061–1065.

    CAS  Google Scholar 

  • Sigg, H. P., 1964, Die Konstitution von Brefeldin A, Helv. Chim. Acta 47:1401–1415.

    CAS  Google Scholar 

  • Simonart, P., and Wiaux, A., 1959, Biochemical study of Penicillium griseofulvum. I. Presence of o-, m-, and p-hydroxybenzoic acids, Bull. Soc. Chim. Biol. 41:537–540.

    CAS  Google Scholar 

  • Simpson, T. J., 1979, Carbon-13 nuclear magnetic resonance structural and biosynthetic studies on deoxyherqueinone and herqueichrysin, phenolenone metabolites of Penicillium herquei, J. Chem. Soc. Perkin Trans. 1 1233-1238.

    Google Scholar 

  • Simpson, T. J., Lunnon, M. W., and MacMillan, J., 1979, Fungal products. 21. Biosynthesis of the fungal metabolite, wortmannin, from [l,213G2]-acetate, J. Chem. Soc. Perkin Trans 1 931-934.

    Google Scholar 

  • Simpson, T. J., Stenzel, D. J., Bartlett, A. J., O’Brien, E., and Holker, J. S. E., 1982, Studies on fungal metabolites. 3. 13C NMR spectral and structural studies on austin and new related meroterpenoids from Aspergillus ustus, Aspergillus variecolor and Penicillium diversum, J. Chem. Soc. Perkin Trans. 1 2687-2692.

    Google Scholar 

  • Singleton, V. L., Bohonos, N., and Ullstrup, A. J., 1958, Decumbin, a new compound from a species of Penicillium, Nature (London) 181:1072–1073.

    CAS  Google Scholar 

  • Springer, J. P., Clardy, J., Wells, J. M., Cole, R. J., and Kirksey, J. W., 1975, The structure of paxilline, a tremorgenic metabolite of Penicillium paxilli, Tetrahedron Lett. 30:2531–2534.

    Google Scholar 

  • Stack, M. E., and Mislivec, P. B., 1978, Production of xanthomegnin and viomellein by isolates of Aspergillus ochraceous, Penicillium cyclopium and Penicillium viridicatum, Appl. Environ. Microbiol. 36:552–554.

    PubMed  CAS  Google Scholar 

  • Stack, M. E., Eppley, R. M., Dreifuss, P. A., and Pohland, A. E., 1977, Isolation and identification of xanthomegnin, viomellein, rubrosulphin and viopurpurin as metabolites of Penicillium viridicatum, Appl. Environ. Microbiol. 33:351–355.

    PubMed  CAS  Google Scholar 

  • Stack, M. E., Mazzola, E. P., and Eppley, R. M., 1979, Structures of xanthoviridicatin D and xanthoviridicatin G, metabolites of Penicillium viridicatum: Application of proton and carbon-13 NMR spectroscopy, Tetrahedron Lett. 52:4989–4992.

    Google Scholar 

  • Steiner, E., Kalamar, J., Charollais, E., and Posternak, T., 1974, Recherches sur la biochemie des champignons inférieurs. IX. Synthèse de précurseurs marqués et biosynthèse de la phoenicine et de l’oosporeine, Helv. Chim. Acta 57:2377–2387.

    PubMed  CAS  Google Scholar 

  • Stevens, R. L., and Emery, T. F., 1966, The biosynthesis of hadacidin, Biochemistry 5:74–81.

    PubMed  CAS  Google Scholar 

  • Steyn, P. S., and Vleggaar, R., 1983, Roquefortine, an intermediate in the biosynthesis of oxaline in cultures of Penicillium oxalicum, J. Chem. Soc. Chem. Commun. 560-561.

    Google Scholar 

  • Steyn, P. S., Vleggaar, R., Wessels, P. L., and Woudenberg, M., 1982, Biosynthesis of citreoviridin: A carbon-13 NMR study, J. Chem. Soc. Perkin Trans. 1 2175-2178.

    Google Scholar 

  • Studer, R. O., 1969, Synthesis and structure of fungisporin, Experientia 25:899.

    PubMed  CAS  Google Scholar 

  • Sumiki, Y., and Miyao, K., 1952, Studies on fungisporin. I, J. Agric. Chem. Soc. Jpn. 26:27–31.

    CAS  Google Scholar 

  • Sunagawa, M., Ohta, T., and Nozoe, S., 1979, Isolation and structure of brefeldin C., Heterocycles 13:267–270.

    CAS  Google Scholar 

  • Suter, P. J., and Turner, W. B., 1967, 2-Pyruvoylaminobenzamide, a metabolite of Penicillium chrysogenum, J. Chem. Soc. C 2240-2242.

    Google Scholar 

  • Tabuchi, T., Nakamura, L, and Kobayashi, T., 1977, Accumulation of the open-ring acid of spiculisporic acid by Penicillium spiculisporum, J. Ferment. Technol. 55:37–49.

    CAS  Google Scholar 

  • Takeda, N., Seo, S., Ogihara, Y., Sankawa, U., Iitaka, Y., Kitagawa, I., and Shibata, S., 1973, Studies on fungal metabolites. 31. Anthraquinoid colouring matters of Penicillium islandicum Sopp and some other fungi, luteoskyrin, rubroskyrin, rugulosin and their related compounds, Tetrahedron 29:3703–3719.

    CAS  Google Scholar 

  • Tanenbaum, S. W., and Bassett, E. W., 1959, The biosynthesis of patulin. III. Evidence for a molecular rearrangement of the aromatic ring, J. Biol. Chem. 234:1861–1866.

    PubMed  CAS  Google Scholar 

  • Tanenbaum, S. W., and Nakajima, S., 1969, The biosynthesis of pulvilloric acid, Biochemistry 8:4622–4631.

    PubMed  CAS  Google Scholar 

  • Tatsuno, T., Kobayashi, N., Okubo, K., and Tsunoda, H., 1975, Recherches toxicologiques sur les substances toxiques de Penicillium tardum. 1. Isolement et identification des substances cytotoxiques, Chem. Pharm. Bull. 23:351–354.

    PubMed  CAS  Google Scholar 

  • Tertzakian, G., Haskins, R. H., Slater, G. P., and Nesbitt, L. R., 1964, The structure of cephalochromin, Proc. Chem. Soc. 195-196.

    Google Scholar 

  • Thomas, R., 1961, Studies in the biosynthesis of fungal metabolites. 3. The biosynthesis of fungal perinaphthenones, Biochem. J. 78:807–813.

    PubMed  CAS  Google Scholar 

  • Tony Lam, Y. K., Gullo, U. P., Goegelman, R. T., Jorn, D., Huang, L., De Riso, C., Monaghan, R. L., and Putter, L, 1981, Dihydrocompactin, a new potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase from Penicillium citrinum, J. Antibiot. 34:614–616.

    Google Scholar 

  • Turner, W. B., 1971, Fungal Metabolites, Academic Press, London.

    Google Scholar 

  • Turner, W. B., 1978, The isolation and structures of the fungal metabolites lapidosin and diver-sonol, J. Chem. Soc. Perkin Trans. 1 1621.

    Google Scholar 

  • Turner, W. B., and Aldridge, D. C., 1983, Fungal Metabolites II, Academic Press, New York.

    Google Scholar 

  • Udagawa, S., 1963, Sclerotiorin, a major metabolite of Penicillium hirayamae, Chem. Pharm. Bull. 11:366–367.

    CAS  Google Scholar 

  • Uramoto, M., Tanabe, M., Hirotsu, K., and Clardy, J., 1982, A new tremorgenic metabolite related to verruculogen from Penicillium verruculosum, Heterocycles 17:349–354.

    CAS  Google Scholar 

  • Van der Merwe, K.J., Steyn, P. S., and Fourie, L., 1965, The constitutions of ochratoxins A, B, and C., metabolites of Aspergillus ochraceous Wilh., J. Chem. Soc. 7083-7088.

    Google Scholar 

  • Van Eijk, G. W., 1973, Anthraquinone in the fungus Talaromyces stipitatus, Experientia 29:522–523.

    PubMed  Google Scholar 

  • Van Walbeek, W., Scott, P. M., Harwig, J., and Lawrence, J. W., 1969, Penicillium viridicatum Westling: A new source of ochratoxin A, Can. J. Microbiol. 15:1281–1285.

    PubMed  Google Scholar 

  • Verachten, H., and Hanssens, L., 1975, Isolation and identification of phenolic substances from the fungus Penicillium spinulosum, Ann. Microbiol. (Inst. Pasteur) 126A:143–149.

    Google Scholar 

  • Vesonder, R. F., 1979, Xanthocillin, a metabolite of Eupenicillium egyptiacum NRRL 1022, J. Nat. Prod. 42:232–233.

    CAS  Google Scholar 

  • Vesonder, R. F., Stodola, F. H., Wickerham, L. J., Ellis, J. J., and Rohwedder, W. K., 1971, 11-Hydroxy-trans-9-dodecanoic acid lactone, a 12-membered-ring compound from a fungus, Can. J. Chem. 49:2029–2032.

    CAS  Google Scholar 

  • Vesonder, R. F., Stodola, F. H., and Rohwedder, W. K., 1972, Formation of the δ-lactone of 3,5-dihydroxydecanoic acid by the fungus Cephalosporium recifei, Can. J. Biochem. 50:363–365.

    PubMed  CAS  Google Scholar 

  • Vesonder, R. F., Ciegler, A., Fennell, D., Tjarks, L. W., and Jensen, A. H., 1976, Curvularin from Penicillium baradicum Baghdadi NRRL 3754, and biological effects, J. Environ. Sci. Health B11:289–297.

    CAS  Google Scholar 

  • Vesonder, R. F., Tjarks, L., Rohwedder, W. K., and Kieswetter, D. O., 1980, Indole metabolites of Penicillium cyclopium NRRL 6093, Experientia 36:1308.

    CAS  Google Scholar 

  • Vining, L. C., McInnes, A. G., Smith, D. G., Wright, J. L. C., and Taber, W. A., 1982, Dimeric clavine alkaloids produced by Penicillium citreo-viride, FEMS Symp. 13:243–251.

    CAS  Google Scholar 

  • Vleggaar, R., and Wessels, P. L., 1980, Stereochemistry of the dehydrogenation of (2S)-histidine in the biosynthesis of roquefortine and oxaline, J. Chem. Soc. Chem. Commun. 160.

    Google Scholar 

  • Wagener, R. E., Davis, N. D., and Diener, U. L., 1980, Penitrem A and roquefortine production by Penicillium commune, Appl. Environ. Microbiol. 39:882–887.

    PubMed  CAS  Google Scholar 

  • Weedon, C. M., and Mantle, P. G., 1987, Paxilline biosynthesis by Acremonium loliae; a step towards defining the origin of lolitrem neurotoxins. Phytochemistry 26:969–971.

    CAS  Google Scholar 

  • Weete, J. D., and Laseter, J. L., 1974, Distribution of sterols in fungi. I. Fungal spores, Lipids 9:575–581.

    PubMed  CAS  Google Scholar 

  • Wei, R.-D., Schnoes, H. K., Hart, P. A., and Strong, F. M., 1975, The structure of PR toxin, a mycotoxin from Penicillium roqueforti, Tetrahedron 31:109–114.

    CAS  Google Scholar 

  • White, J. D., and Taylor, S. I., 1970, Biosynthesis of ergosta-4,6,8(14),22-tetraen-3-one: In vivo incorporation of a 1,4-dioxide, J. Am. Chem. Soc. 92:5811–5813.

    PubMed  CAS  Google Scholar 

  • White, J. D., Perkins, D. W., and Taylor, S. I., 1973, Biosynthesis of ergosta-4,6,8(14),22-tetraen-3-one: A novel oxygenative pathway, Bio-org. Chem. 2:163–175.

    CAS  Google Scholar 

  • Wijkman, N., 1931, Uber einige neue, durch Schimmelpilze gebildete Substanzen, Ann. Chim. 485:61–73.

    CAS  Google Scholar 

  • Willingale, J., Atwell, S. M., and Mantle, P. G., 1983a, Unusual ergot alkaloid biosynthesis in sclerotia of a Claviceps purpurea mutant, J. Gen. Microbiol. 129:2109–2115.

    CAS  Google Scholar 

  • Willingale, J., Perera, K. P. W. C., and Mantle, P. G., 1983b, An intermediary role for the tremorgenic mycotoxin TR-2 in the biosynthesis of verruculogen, Biochem. J. 214:991–993.

    PubMed  CAS  Google Scholar 

  • Wilson, B. J., Wilson, C. H., and Hayes, A. W., 1968, Tremorgenic toxin from Penicillium cyclopium grown on food materials, Nature (London) 220:77–78.

    CAS  Google Scholar 

  • Wilson, B. J., Yang, D. T. C., and Harris, T. M., 1973, Production, isolation and preliminary toxicity studies of brevianamide A from cultures of Penicillium viridicatum, Appl. Microbiol. 26:633–635.

    PubMed  CAS  Google Scholar 

  • Yamamoto, I., Mizuta, E., Henmi, T., Yamono, T., and Yamatodani, S., 1973, Epoformin, a new antibiotic produced by Penicillium claviforme, Takeda Kenkynsho Ho 32:532–538.

    CAS  Google Scholar 

  • Yamatodani, S., Asahi, Y., Matsukura, A., Ohmomo, S., and Abe, M., 1970, Structure of rugulovasine A, B and their derivatives, Agric. Biol. Chem. 34:485–487.

    CAS  Google Scholar 

  • Yamazaki, M., Fujimoto, H., and Miyaki, K., 1972, Metabolites of some strains of Penicillium isolated from foods, Yakugaku Zasshi 91:101–104.

    Google Scholar 

  • Yamazaki, M., Okuyama, E., Kobayashi, M., and Inoue, H., 1981, The structure of paraher-quamide, a toxic metabolite from Penicillium paraherquei, Tetrahedron Lett. 22:135–136.

    CAS  Google Scholar 

  • Yeulet, S. E., Mantle, P. G., Bilton, J. N., Rzepa, H. S., and Sheppard, R. N., 1986, Auranthine, a new benzodiazepinone metabolite of Penicillium aurantiogriseum, J. Chem. Soc. Perkin Trans. 1 1891-1894.

    Google Scholar 

  • Yoshihira, K., Takahashi, C., Sekita, S., and Natori, S., 1972, Tetrahydroauroglaucin from Penicillium charlesii, Chem. Pharm. Bull. 20:2727–2728.

    CAS  Google Scholar 

  • Yoshioka, H., Nakatsu, K., Sato, M., and Tatsuno, T., 1973, The molecular structure of cyclochlorotine, a toxic chlorine-containing cyclic pentapeptide, Chem. Lett. 1319-1322.

    Google Scholar 

  • Zeeck, A., Rub, P., Laatsch, H., Loeffler, W., Wehrle, H., Zahner, H., and Holst, H., 1979, Isolierung des Antibioticums Semi-vioxanthin aus Penicillium citreoviride und Synthese des Xanthomegnins, Chem. Ber. 112:957–978.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mantle, P.G. (1987). Secondary Metabolites of Penicillium and Acremonium . In: Peberdy, J.F. (eds) Penicillium and Acremonium . Biotechnology Handbooks, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1986-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1986-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1988-5

  • Online ISBN: 978-1-4899-1986-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics