Skip to main content

Morphology and Physiology of Penicillium and Acremonium

  • Chapter
Penicillium and Acremonium

Part of the book series: Biotechnology Handbooks ((BTHA,volume 1))

Abstract

Both Penicillium and Acremonium ( = Cephalosporium) are common and widespread in soil; they are particularly associated with senescent and dead plant material, so that the majority of floristic studies of a wide range of soil types and plant surfaces include species of these genera in the lists of fungi isolated. Although the two genera are especially associated through the production of β-lactam antibiotics by one, or at the most a few, species, they differ markedly in the visual impact that they make when growing as colonies on plates of solid media. On the one hand, mature colonies of Penicillium are characterized by the production of large numbers of dry conidiospores that are usually gray-green to blue-green, although strains of P. camembertii may remain persistently white and P. humuli has a distinctly brownish coloration. Colonies of Acremonium, on the other hand, are characterized by their pale colors—often turning pink or orange, although A. butyri produces pale yellow-green colonies—and the production of wet or slimy spores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, C. G., Haworth, W. N., Raistrick, H., and Stacey, M., 1939, Polysaccharides synthesized by microorganisms. IV. The molecular constitution of luteose, Biochem. J. 33:272–279.

    PubMed  CAS  Google Scholar 

  • Baddiley, J., Buchanan, J. G., and Thain, E. M., 1953, The polysaccharide of Penicillium islandicum Sopp., J. Chem. Soc. 1953:1944–1946.

    Google Scholar 

  • Ballio, A., Divitorio, V., and Russi, S., 1964, The isolation of trehalose and polyols from the conidia of Penicillium chrysogenum Thom, Arch. Biochem. Biophys. 107:177–183.

    PubMed  CAS  Google Scholar 

  • Beare, J. L., and Kates, M., 1967, Properties of the phospholipase B from Penicillium notatum, Can. J. Biochem. 45:101–113.

    Google Scholar 

  • Benko, P. V., Wood, T. C., and Segel, I. H., 1969, Multiplicity and regulation of amino acid transport in Penicillium chrysogenum, Arch. Biochem. Biophys. 129:498–508.

    PubMed  CAS  Google Scholar 

  • Bennett, A. S., and Quackenbush, F. W., 1969, Synthesis of unsaturated fatty acids by Penicillium chrysogenum, Arch. Biochem. Biophys. 130:567–572.

    PubMed  CAS  Google Scholar 

  • Bird, B. A., and Campbell, I. M., 1982, Disposition of mycophenolic acid, brevianamide A, asperphenamate and ergosterol in solid cultures of Penicillium brevicompactum, Appl. Environ. Microbiol. 43:345–348.

    PubMed  CAS  Google Scholar 

  • Bird, B. A., Remaley, A. T., and Campbell, I. M., 1981, Brevianamides A and B are formed only after conidiation has begun in solid cultures of Penicillium brevicompactum, Appl. Environ. Microbiol. 42:521–525.

    PubMed  CAS  Google Scholar 

  • Bobbitt, T. F., and Nordin, J. H., 1978, Hyphal nigeran as a potential phylogenetic marker for Aspergillus and Penicillium species, Mycologia 70:1201–1211.

    PubMed  CAS  Google Scholar 

  • Bobbitt, T. F., and Nordin, J. H., 1980, A survey of Aspergillus and Penicillium species producing an exocellular nigeran-protein complex, Mycologia 72:637–640.

    PubMed  CAS  Google Scholar 

  • Booth, C., 1971, Fungal culture media, in: Methods in Microbiology (C. Booth, ed.), Academic Press, New York, pp. 49–111.

    Google Scholar 

  • Bott, T. L., and Rogenmuser, K., 1980, Fungal pathogen of Cladophora glomerata (Chlorophyta), Appl. Environ. Microbiol. 40:977–980.

    PubMed  CAS  Google Scholar 

  • Cannon, P. F., and Hawkesworth, D. L., 1984, A revision of the genus Neocosmospora (Hypocreales), Trans. Br. Mycol Soc. 82:673–688.

    Google Scholar 

  • Carlile, M. J., Lewis, B. G., Mordue, E. M., and Northover, J., 1961, The development of coremia. I. Penicillium claviforme, Trans. Br. Mycol. Soc. 44:129–133.

    Google Scholar 

  • Carlile, M. J., Dickens, S. W., Mordue, E. M., and Schipper, M. A. A., 1962, The development of coremia. II. Penicillium isariiforme, Trans. Br. Mycol. Soc. 45:457–461.

    Google Scholar 

  • Clark, E. M., White, J. F., and Patterson, R. M., 1983, Improved histochemical techniques for the detection of Acremonium coenophialum in tall fescue (Festuca arundinacea) and methods of in vitro culture of the fungus, J. MicrobioL Methods 1:149–156.

    Google Scholar 

  • Codner, R. C., and Platt, B. C., 1959, Light induced production of carotenoid pigments by cephalosporia, Nature (London) 184:741–742.

    CAS  Google Scholar 

  • Cole, G. T., and Samson, R. A., 1979, Patterns of Development in Conidial Fungi, Pitman, London.

    Google Scholar 

  • Cooney, D. G., and Emerson, R., 1964, Thermophilic Fungi, Freeman, San Francisco.

    Google Scholar 

  • Dart, R. K., Stretton, R. J., and Lee, J. D., 1976, Relationships of Penicillium species based on their long chain fatty acids, Trans. Br. Mycol. Soc. 66:525–529.

    Google Scholar 

  • Dawson, R. M. C., 1958, Studies on the hydrolysis of lecithin by a Penicillium notatum phospholipase B preparation, Biochem. J. 70:559–570.

    PubMed  CAS  Google Scholar 

  • Day, J. B., Mantle, P. G., and Shaw, B. L, 1980, Production of verruculogen by Penicillium estinogenum in stirred fermenters, J. Gen. MicrobioL 117:405–410.

    PubMed  CAS  Google Scholar 

  • Dewey, F. M., Donnelly, K. A., and Foster, D., 1983, Penicillium waksmanii isolated from a red seaweed Eucheuma striatum, Trans. Br. Mycol. Soc. 81:433–434.

    Google Scholar 

  • Domsch, K. H., and Gams, W., 1969, Variability and potential of a soil fungus population to decompose pectin, xylan and carboxymethyl cellulose, Soil Biol. Biochem. 1:29–36.

    CAS  Google Scholar 

  • Domsch, K. H., Gams, W., and Anderson, T.-H., 1980, Compendium of Soil Fungi, Academic Press, London.

    Google Scholar 

  • Eylar, D. R., and Schmidt, E. L., 1959, A survey of heterotrophic micro-organisms from soil for ability to form nitrite and nitrate, J. Gen. MicrobioL 20:473–481.

    PubMed  CAS  Google Scholar 

  • Fergus, C. L., 1982, The heat resistance of some mesophilic fungi isolated from mushroom compost, Mycologia 74:149–152.

    Google Scholar 

  • Finol, M. L., Marth, E. H., and Lindsay, R. C., 1982, Depletion of sorbate from different media during growth of Penicillium species, J. Food Protect. 45:398–404.

    CAS  Google Scholar 

  • Fletcher, J., 1971, Conidium ontogeny in Penicillium, J. Gen. MicrobioL 67:207–214.

    PubMed  CAS  Google Scholar 

  • Frisvad, J. C., 1981, Physiological criteria and mycotoxin production as aids in identification of common asymmetric penicillia, Appl. Environ. Microbiol. 41:568–579.

    PubMed  CAS  Google Scholar 

  • Gallagher, R. T., White, E. P., and Mortimer, P. H., 1981, Ryegrass staggers: Isolation of potent neurotoxins lolitrem A and lolitrem B from staggers-producing pastures, N. Z. Vet. J. 29:189–190.

    PubMed  CAS  Google Scholar 

  • Gallagher, R. T., Hawkes, A. D., Steyn, P. S., and Vleggaar, R., 1984, Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: Structure elucidation of lolitrem B, J. Chem. Soc. Chem. Commun. 1984:614–616.

    Google Scholar 

  • Galum, M., Keller, P., Feldstein, H., Galum, E., Siegel, S., and Siegel, B., 1983, Recovery of uranium VI from solution using fungi. 2. Release from uranium loaded Penicillium biomass, Water Air Soil Pollut. 20:277–286.

    Google Scholar 

  • Gander, J. E., and Fang, F., 1976, The occurrence of ethanolamine and galactofuranosyl residues attached to Penicillium charlesii cell wall saccharides, Biochem. Biophys. Res. Commun. 71:719–725.

    PubMed  CAS  Google Scholar 

  • Gander, J. E., Jentoft, N. H., Drewes, L. R., and Rick, P. D., 1974, The 5-O-β-d-galactofuranosyl containing exocellular glycopeptide of Penicillium charlesii: Characterization of the phosphogalactomannan, J. Biol. Chem. 249:2063–2072.

    PubMed  CAS  Google Scholar 

  • Gomez-Miranda, B., Guerrero, C., and Leal, J. A., 1984, Effect of culture age on cell wall polysaccharides of Penicillium allahabadense, Exp. Mycol. 8:298–303.

    CAS  Google Scholar 

  • Graafmans, W. D. J., 1973, The influence of carbon dioxide on morphogenesis in Penicillium isariiforme, Arch. Mikrobiol. 91:67–76.

    PubMed  CAS  Google Scholar 

  • Graafmans, W. D. J., 1974, Metabolism of Penicillium isariiforme on exposure to light, with special reference to citric acid synthesis, J. Gen. Microbiol. 82:247–252.

    Google Scholar 

  • Gregory, P. H., 1973, The Microbiology of the Atmosphere, 2nd ed., Leonard Hill, Aylesbury.

    Google Scholar 

  • Hanlin, R. T., 1976, Phialide and conidium development in Aspergillus clavatus, Am. J. Bot. 63:144–155.

    Google Scholar 

  • Hashimoto, T., Wu-Yuan, C. D., and Blumenthal, H. J., 1976, Isolation and characterization of the rodlet layer of Trichophyton mentagrophytes microconidial walls, J. Bacteriol. 127:1543–1549.

    PubMed  CAS  Google Scholar 

  • Hawker, L. E., 1966, Germination, morphology and anatomical changes in the fungus spore, in: The Fungus Spore (M. F. Madelin, ed.), Butterworth, London, pp. 151–161.

    Google Scholar 

  • Hawkesworth, D. L., Sutton, B. C., and Ainsworth, G. E., 1983, Ainsworth and Bisby’s Dictionary of the Fungi, C.M.I., Kew.

    Google Scholar 

  • Hess, W. M., Sassen, M. M. A., and Remsen, C. C., 1968, Surface characteristics of Penicillium conidia, Mycologia 60:290–303.

    PubMed  CAS  Google Scholar 

  • Hettige, G., and Sheridan, J. E., 1984, Mycoflora of stored diesel fuel in New Zealand, Int. Biodeterior. Bull. 20:225–227.

    Google Scholar 

  • Hodges, C. S., and Perry, J. J., 1973, A new species of Eupenicillium from soil, Mycologia 65:697–702.

    PubMed  Google Scholar 

  • Hossain, M. B., Eng-Wilmot, D. L., Loghry, R. A., and Van der Helm, D., 1980, Circular dichroism, crystal structure, and absolute configuration of the siderophore ferric N, N′, N″-triacetylfusarinine FeC39H57N6O15, J. Am. Chem. Soc. 102:5766–5773.

    CAS  Google Scholar 

  • Hunter, D. R., and Segel, I. H., 1971, Acidic and basic amino acid transport systems in P. chrysogenum, Arch. Biochem. Biophys. 144:168–183.

    PubMed  CAS  Google Scholar 

  • Hunter, D. R., and Segel, I. H., 1973, Effect of weak acids on amino acid transport by Penicillium chrysogenum: Evidence of a proton or charge gradient as the driving force, J. Bacteriol. 113:1184–1192.

    PubMed  CAS  Google Scholar 

  • Ikotun, T., 1984, Production of oxalic acid by Penicillium oxalicum in culture and in infected yam tissue and interaction with macerating enzyme, Mycopathologia 88:9–14.

    CAS  Google Scholar 

  • Kawasaki, N., Sugatani, J., and Saito, K., 1975, Studies on a phospholipase B from Penicillium notatum: Purification, properties and mode of action, J. Biochem. 77:1233–1244.

    PubMed  CAS  Google Scholar 

  • Kimura, T., and Tsuchiya, K., 1982, Characteristics of protease production by Cephalosporium sp., Appl. Environ. Microbiol. 43:654–658.

    PubMed  CAS  Google Scholar 

  • Koman, V., Betina, V., and Baruth, Z., 1969, Fatty acid lipid and cyanein production by Penicillium cyaneum, Arch. Microbiol. 65:172.

    CAS  Google Scholar 

  • Liewen, M. B., and Marth, E. H., 1985, Viability and ATP content of conidia of sorbic acid-sensitive and resistant strains of Penicillium roquefortii after exposure to sorbic acid, Appl. Microbiol. Biotechnol. 21:113–117.

    CAS  Google Scholar 

  • Magan, N., and Lacey, J., 1984a, Water relations of some Fusarium species from infected wheat ears and grain, Trans. Br. Mycol. Soc. 83:281–285.

    Google Scholar 

  • Magan, N., and Lacey, J., 1984b, Effect of temperature and pH on water relations of field and storage fungi, Trans. Br. Mycol. Soc. 82:71–81.

    Google Scholar 

  • Mangallam, S., Menon, M. R., Sukapure, R. S., and Gopalkrishnan, K. S., 1967, Amylase production by some Cephalosporium species, Hindustan Antibiot. Bull. 10:194–199.

    Google Scholar 

  • Mantle, P. G., and Wertheim, J. S., 1982, Production of verruculogen during growth of Penicillium raistrickii, Trans. Br. Mycol. Soc. 79:348–349.

    Google Scholar 

  • Martin, J. F., Nicolas, G., and Villanueva, J. R., 1973a, Chemical changes in the cell wall of conidia of Penicillium notatum during germination, Can. J. Microbiol. 19:789–796.

    PubMed  CAS  Google Scholar 

  • Martin, J. F., Uruburu, F., and Villanueva, J. R., 1973b, Ultrastructural changes in the conidia of Penicillium notatum during germination, Can. J. Microbiol. 19:797–801.

    PubMed  CAS  Google Scholar 

  • Martinez, A. T., Calvo, M. A., and Ramirez, C., 1982, Scanning electron microscopy of Penicillium conidia, Antonie van Leeuwenhoek J. Microbiol. Serol. 48:245–255.

    CAS  Google Scholar 

  • Matsunaga, T., Okubo, A., Fukami, M., Yamazaki, S., and Toda, S., 1981, Identification of β-galactofuranosyl residues and their rapid internal motion in the Penicillium ochro-chloron cell wall probed by 13C NMR, Biochem. Biophys. Res. Commun. 102:525–530.

    Google Scholar 

  • Miles, E. A., and Trinci, A. P. J., 1983, Effect of pH and temperature on morphology of batch and chemostat cultures of Penicillium chrysogenum, Trans. Br. Mycol. Soc. 81:193–200.

    Google Scholar 

  • Minter, D. W., Kirk, P. M., and Sutton, B. C., 1982, Holoblastic phialides, Trans. Br. Mycol. Soc. 79:75–93.

    Google Scholar 

  • Minter, D. W., Kirk, P. M., and Sutton, B. C., 1983a, Thallic phialides, Trans. Br. Mycol. Soc. 80:39–66.

    Google Scholar 

  • Minter, D. W., Sutton, B. C., and Brady, B. L., 1983b, What are phialides anyway?, Trans. Br. Mycol. Soc. 81:109–120.

    Google Scholar 

  • Mislivec, P. B., 1975, The effect of botran on fascicle production by species of Penicillium, Mycologia 67:194–198.

    PubMed  CAS  Google Scholar 

  • Mislivec, P. B., and Tuite, J., 1970, Temperature and relative humidity requirements of species of Penicillium isolated from yellow dent corn kernels, Mycologia 62:75–88.

    PubMed  CAS  Google Scholar 

  • Moore, R. E., and Emery, T. F., 1976, N-Acetylfusarinines: Isolation, characterization and properties, Biochemistry 15:2719–2723.

    PubMed  CAS  Google Scholar 

  • Morgan-Jones, G., and Gams, W., 1982, Notes on Hyphomycetes. XLI. An endophyte of Festuca arundinacea and the anamorph of Epichloe typhina: New taxa in one of two new sections of Acremonium, Mycotaxon. 15:311–318.

    Google Scholar 

  • Murphy, R. J., and Levy, J. F., 1983, Production of copper oxalate by some copper tolerant fungi, Trans. Br. Mycol. Soc. 81:165–168.

    CAS  Google Scholar 

  • Nakajima, S., and Tanebaum, S. W., 1968, The fatty acids of Penicillium pulvillorum, Arch. Biochem. Biophys. 127:150–156.

    PubMed  CAS  Google Scholar 

  • Nash, C. H., and Huber, F. M., 1971, Antibiotic synthesis and morphological differentiation of Cephalosporium acremonium, Appl. Microbiol. 22:6–10.

    PubMed  CAS  Google Scholar 

  • Nishijima, M., and Nojima, S., 1977, Positional specificity of phospholipase B of Penicillium notatum, J. Biochem. 81:533–537.

    PubMed  CAS  Google Scholar 

  • Nover, L., and Luckner, M., 1974, Expression of secondary metabolism as part of the differentiation processes during idiophase development of Penicillium cyclopium Westling, Biochem. Physiol. Pflanz. 166:293–305.

    CAS  Google Scholar 

  • Okumura, T., Sugatani, J., and Saito, K., 1981, Role of the carbohydrate moiety of phospholipase B from Penicillium notatum in enzyme activity, Arch. Biochem. Biophys. 211:419–429.

    PubMed  CAS  Google Scholar 

  • Oleniacz, W. S., and Pisano, M. A., 1968, Proteinase production by a species of Cephalosporium, Appl. Microbiol. 16:90–96.

    PubMed  CAS  Google Scholar 

  • Oso, A., 1979, Mycelial growth and amylase production by Talaromyces emersonii, Mycologia 71:520–536.

    CAS  Google Scholar 

  • Parn, P., and Seviour, R. J., 1974, Pigments induced by organomercurial compounds in Cephalosporium diospyri, J. Gen. Microbiol. 85:229–236.

    PubMed  CAS  Google Scholar 

  • Pearce, J. N., Bartman, C. D., Doerfler, D. L., and Campbell, I. M., 1981, 6-Methylsalicylic acid production in solid cultures of Penicillium patulum occurs only when an aerial mycelium is present, Appl. Environ. Microbiol. 41:1407–1412.

    Google Scholar 

  • Pirt, S. J., and Callow, D. S., 1960, Studies of the growth of Penicillium chrysogenum in continuous flow culture with reference to penicillin production, J. Appl. Bacteriol. 23:87–98.

    Google Scholar 

  • Pisano, M. A., Oleniacz, W. S., Mason, R. T., Fleischman, A. I., Vaccaro, S. E., and Catalano, G. R., 1963, Enzyme production by species of Cephalosporium, Appl. Microbiol. 11:111–115.

    PubMed  CAS  Google Scholar 

  • Pitt, D., and Poole, P. C., 1981, Calcium-induced conidiation in Penicillium notatum in submerged culture, Trans. Br. Mycol. Soc. 76:219–230.

    CAS  Google Scholar 

  • Pitt, D., Mosley, M. J., and Barnes, J. C., 1983, Glucose oxidase activity and gluconate production during calcium-induced conidiation of Penicillium notatum in submerged culture, Trans. Br. Mycol. Soc. 81:21–27.

    CAS  Google Scholar 

  • Pitt, J. I., 1973, An appraisal of identification methods for Penicillium species: Novel taxonomic criteria based on temperature and water relations, Mycologia 55:1135–1157.

    Google Scholar 

  • Pitt, J. I., 1979, The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces, Academic Press, New York.

    Google Scholar 

  • Ramirez, C., 1982, Manual and Atlas of the Penicillia, Elsevier, Amsterdam.

    Google Scholar 

  • Ramirez, C., and Gonzalez, C. C., 1984, Penicillium flavido-stipitatum sp. nov., Mycopathologia 88:3–7.

    Google Scholar 

  • Ramirez, C., and Martinez, A. T., 1980, Some species of Penicillium recovered from the atmosphere in Madrid and from other substrata, Mycopathologia 72:181–191.

    PubMed  CAS  Google Scholar 

  • Ramirez, C., Martinez, A. T., and Berenguer, J., 1980, Four new species of Penicillium isolated from the air, Mycopathologia 72:27–34.

    PubMed  CAS  Google Scholar 

  • Raper, K. B., and Thorn, C., 1949, A Manual of the Penicillia, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Rapp, P., Grote, E., and Wagner, F., 1981, Formation and location of l,4-β-gluconases and 1,4-β-glucosidases from Penicillium janthinellum, Appl. Environ. Microbiol. 41:857–866.

    PubMed  CAS  Google Scholar 

  • Read, M. A., and Seviour, R. J., 1984, Effect of pH on maximum specific growth rate (μmax) of Acremonium diospyri, Trans. Br. Mycol. Soc. 82:159–161.

    Google Scholar 

  • Remsen, C. C., Hess, W. M., and Sassen, M. A. A., 1967, Fine structure of germinating Penicillium megasporium conidia, Protoplasma 64:439–451.

    PubMed  CAS  Google Scholar 

  • Richards, R. L., and Quackenbush, F. W., 1974, Alternate pathways of linolenic acid biosynthesis in growing cultures of Penicillium chrysogenum, Arch. Biochem. Biophys. 165:780–786.

    PubMed  CAS  Google Scholar 

  • Righelato, R. C., 1978, The kinetics of mycelial growth, in: Fungal Walls and Hyphal Growth (J. H. Burnett and A. P. J. Trinci, eds.), Cambridge University Press, Cambridge, pp. 385–401.

    Google Scholar 

  • Rintz, R. E., 1973, A zonal leaf spot of water hyacinth caused by Cephalosporium zonatum, Hyacinth Control J. 11:41–44.

    Google Scholar 

  • Rizza, V., and Kornfeld, J. M., 1969, Components of conidial and hyphal walls of Penicillium chrysogenum, J. Gen. Microbiol. 58:307–315.

    PubMed  CAS  Google Scholar 

  • Roberts, D. W., and Humber, R. A., 1981, Entomogenous fungi, in: Biology of Conidial Fungi, Vol. 2 (G. T. Cole and B. Kendrick, eds.), Academic Press, New York, pp. 201–236.

    Google Scholar 

  • Rudakov, O. L., 1978, Physiological groups in mycophilic fungi, Mycologia 70:150–159.

    Google Scholar 

  • Ruperez, P., Gomez-Miranda, B., and Leal, J. A., 1983, Extracellular β-malanoglucan from Penicillium erythromellis, Trans. Br. Mycol. Soc. 80:313–318.

    CAS  Google Scholar 

  • Ryu, D. D. Y., and Hospodka, J., 1980, Quantitative physiology of Penicillium chrysogenum in penicillin fermentation, Biotechnol. Bioeng. 22:289–298.

    CAS  Google Scholar 

  • Samuels, G. J., 1973, The myxomyceticolous species of Nectria, Mycologia 65:401–420.

    Google Scholar 

  • Samuels, G. J., 1976, Perfect states of Acremonium: The genera Nectria, Actiniopsis, Ijuhya, Neohen-ningsia, Ophiodictyon and Peristomialis, N. Z. J. Bot. 14:231–260.

    Google Scholar 

  • Sassen, M. M. A., Remsen, C. C., and Hess, W. M., 1967, Fine structure of Penicillium megasporum conidiospores, Protoplasma 64:75–88.

    PubMed  CAS  Google Scholar 

  • Satoh, T., Beppu, T., and Arima, K., 1977, Purification and properties of blood-coagulating protease from Cephalosporium sp., Agric. Biol. Chem. 41:293–298.

    CAS  Google Scholar 

  • Scott, D. B., 1968, The genus Eupenicillium Ludwig, G.S.I.R., Pretoria.

    Google Scholar 

  • Segretain, G., 1959, Description d’une nouvelle espèce de Penicillium: Penicillium marneffei n. sp., Bull Trimest. Soc. Mycol. Fr. 75:412–416.

    Google Scholar 

  • Sekiguchi, J., Gaucher, G. M., and Costerton, J. W., 1975a, Microcycle conidiation in Penicillium urticae: An ultrastructural investigation of spherical spore growth, Can. J. Microbiol. 21:2048–2058.

    PubMed  CAS  Google Scholar 

  • Sekiguchi, J., Gaucher, G. M., and Costerton, J. W., 1975b, Microcycle conidiation in Penicillium urticae: An ultrastructural investigation of conidial germination and outgrowth, Can. J. Microbiol. 21:2059–2068.

    PubMed  CAS  Google Scholar 

  • Sekiguchi, J., Gaucher, G. M., and Costerton, J. W., 1975c, Microcycle conidiation in Penicillium urticae: An ultrastructural investigation of conidiogenesis, Can. J. Microbiol. 21:2069–2083.

    PubMed  CAS  Google Scholar 

  • Seviour, R. J., and Codner, R. C., 1973, Effect of light on carotenoid and riboflavin production by the fungus Cephalosporium diospyri, J. Gen. Microbiol. 77:403–415.

    CAS  Google Scholar 

  • Seviour, R. J., and Read, M. A., 1983, Organomercurials as photomimetic compounds in carotenoid production by species of Acremonium and Cephalosporium, Trans. Br. Mycol. Soc. 81:163–165.

    CAS  Google Scholar 

  • Singh, U. P., Vishwakarma, S. N., and Basuchaudhuy, K. C., 1978, Acremonium sordidulum mycoparasitic on Colletotrichum dematium f. truncata in India, Mycologia 70:453–455.

    Google Scholar 

  • Smith, J. E., Anderson, J. G., Deans, S. G., and Davis, B., 1977, Asexual development in Aspergillus, in: Genetics and Physiology of Aspergillus (J. E. Smith and J. A. Pateman, eds.), Academic Press, London, pp. 23–58.

    Google Scholar 

  • Stokes, P. M., and Lindsay, J. E., 1979, Copper tolerance and accumulation in Penicillium ochro-chloron isolated from copper-plating solution, Mycologia 71:796–806.

    CAS  Google Scholar 

  • Stolk, A. C., 1969, Four new species of Penicillium, Antonie van Leeuwenhoek J. Microbiol. Serol. 35:261–274.

    CAS  Google Scholar 

  • Stolk, A. C., and Samson, R. A., 1972, The genus Talaromyces, Stud. Mycol. 2:1–67.

    Google Scholar 

  • Stolk, A. C., and Veenbaas-Rijks, J. W., 1974, Eupenicillium osmophilum sp. n., Antonie van Leeuwenhoek J. Microbiol. Serol. 40:1–5.

    CAS  Google Scholar 

  • Swart, H. J., 1970, Penicillium dimorphosporum sp. nov., Trans. Br. Mycol. Soc. 55:310–313.

    Google Scholar 

  • Thevelein, J. M., 1984, Regulation of trehalose mobilisation in fungi, Microbiol. Rev. 48:42–59.

    PubMed  CAS  Google Scholar 

  • Tubaki, K., 1958, Studies on the Japanese hyphomycetes. 5. Leaf and stem group with a discussion of the classification of hyphomycetes and their perfect stages, J. Hattori Bot. Lab. 21:142–244.

    Google Scholar 

  • Tubaki, K., 1973, Aquatic sediment as a habitat of Emericellopsis with a description of an undescribed species of Cephalosporium, Mycologia 65:938–941.

    Google Scholar 

  • Tweedie, J. W., and Segel, I. H., 1970, Specificity of transport processes for sulphur, selenium and molybdenum anions by filamentous fungi, Biochem. Biophys. Acta 196:95–106.

    PubMed  CAS  Google Scholar 

  • Uchida, J. Y., and Aragaki, M., 1982, Acremonium leaf spot of Syngonium podophyllum cultivar Green Gold: Nomenclature of the causal organism and chemical control, Plant Dis. 66:421–423.

    CAS  Google Scholar 

  • Udagawa, S., and Horie, Y., 1973a, Some Eupenicillium from soils of New Guinea, Trans. Jpn. Mycol. Soc. 14:370–387.

    Google Scholar 

  • Udagawa, S., and Horie, Y., 1973b, Surface ornamentation of ascospores in Eupenicillium species, Antonie van Leeuwenhoek J. Microbiol. Serol. 39:313–319.

    CAS  Google Scholar 

  • Ugalde, U. O., and Pitt, D., 1983a, Silicone coating to prevent acretion on glass walls by Penicillium cyclopium grown in shaken flask culture, Trans. Br. Mycol. Soc. 81:412–415.

    Google Scholar 

  • Ugalde, U., and Pitt, D., 1983b, Morphology and calcium-induced conidiation of Penicillium cyclopium in submerged culture, Trans. Br. Mycol. Soc. 80:319–325.

    Google Scholar 

  • Ugalde, U. O., and Pitt, D., 1984, Subcellular sites of calcium accumulation and relationships with conidiation in Penicillium cyclopium, Trans. Br. Mycol. Soc. 83:547–555.

    CAS  Google Scholar 

  • Unger, P. D., and Hayes, A. W., 1975, Chemical composition of the hyphal wall of a toxigenic fungus, Penicillium rubrum Stoll, J. Gen. Microbiol. 91:201–206.

    PubMed  CAS  Google Scholar 

  • Von Arx, J. A., 1981, The Genera of Fungi Sporulating in Pure Culture, J. Cramer, FL-9490, Vaduz.

    Google Scholar 

  • Watkinson, S. C., 1975, Regulation of coremium morphogenesis in Penicillium claviforme, J. Gen. Microbiol. 87:292–300.

    PubMed  CAS  Google Scholar 

  • Watkinson, S. C., 1977, Effect of amino acids on coremium development in Penicillium claviforme, J. Gen. Microbiol. 101:269–275.

    CAS  Google Scholar 

  • Watkinson, S. C., 1979, Growth of rhizomorphs, mycelial strands, coremia and sclerotia, in: Fungal Walls and Hyphal Growth (J. H. Burnett and A. P. J. Trinci, eds.), Cambridge University Press, Cambridge, pp. 93–113.

    Google Scholar 

  • Watkinson, S., 1981, Accumulation of amino acids during development of coremia in Penicillium claviforme, Trans. Br. Mycol. Soc. 76:231–236.

    CAS  Google Scholar 

  • Whittaker, A., and Long, P. A., 1973, Fungal pelleting, Proc. Biochem. 8:27–31.

    Google Scholar 

  • Wilson, C. L., 1965, Consideration of the use of persimmon wilt as a silvercide for weed persimmon, Plant Dis. Rep. 49:780–791.

    Google Scholar 

  • Wright, B. E., 1973, Critical Variables in Differentiation, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Yagi, J., Yano, T., Kubochi, Y., Hattori, S., Ohashi, M., Sakai, H., Jomon, K., and Ajisaka, M., 1972, Studies on the alkaline proteinase from Cephalosporium. 1. Purification of the enzyme, J. Ferment. Technol. 50:592–599.

    CAS  Google Scholar 

  • Zachariah, K., and Fitz-James, P. C., 1967, The structure of phialides in Penicillium claviforme, Can. J. Microbiol. 13:249–256.

    Google Scholar 

  • Zeidler, G., and Margalith, P., 1973, Modification of the sporulation cycle in Penicillium digitatum, Can. J. Microbiol. 19:481–483.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moss, M.O. (1987). Morphology and Physiology of Penicillium and Acremonium . In: Peberdy, J.F. (eds) Penicillium and Acremonium . Biotechnology Handbooks, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1986-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1986-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1988-5

  • Online ISBN: 978-1-4899-1986-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics