Skip to main content

Applications from Biotechnology Research to Genetic Toxicology

  • Chapter
  • 78 Accesses

Abstract

Technological breakthroughs in nucleic acid synthesis, gene cloning restriction enzyme analysis, and monoclonal antibody production will lead to significant improvements in molecular toxicology methods for testing and population monitoring. These improvements reside primarily in the specificity and quantitation of detection of toxicologically relevant DNA alterations and in the improved ability to measure those alterations in Vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olson, S.: Biotechnology, An Industry Comes of Age, National Academy Press, Washington, D. C., 1986.

    Google Scholar 

  2. Office of Science and Technology Policy. Proposal for a coordinated framework for regulation of biotechnology. Fed. Reg. 49: 50856–50907, 1984.

    Google Scholar 

  3. Waffe, S. O., and Lasagna, L.: From DNA to NDA—The impact of recombinant DNA technology on new drug development. Regul. Toxicol. Pharmacol. 5: 212–224, 1985.

    Article  Google Scholar 

  4. Reedijk, J., and Lohman, P. H. M.: Cis-platinum; synthesis, antitumor activity and mechanisms of action. Pharm. Weekbl. (Sci.) 7 (5): 173–180, 1985.

    Article  CAS  Google Scholar 

  5. Strudenski, A. B., Conner, B. J., Impraim, C. C., Teplitz, R. L., and Wallace, R. B.: Discrimination among the human ß^, ßs, ßC-globin genes using allele-specific oligonucleotide hybridization probes. Am. J. Hum. Genet. 37: 42–51, 1985.

    Google Scholar 

  6. Mekler, P. H., Delehanty, J. T., Lohman, P. H. M., Brouwer, J., Putte, P. v. D., Pearson, P., Pomwels, P. H., and Ramel, C.: The use of DNA technology to study gene alterations and gene evolution. Mutat. Res. 153: 13–55, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Maron, D. M., and Ames, B. N.: Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 73–215, 1983.

    Google Scholar 

  8. Tindall, K. R., Stankowski, Jr., L. F., Machanoff, R., and Hsie, A. W.: Detection of deletion mutations in pSV2gpt-transformed cells. Mol. Cell. Biol. 4 (7): 1411–1415, 1984.

    PubMed  CAS  Google Scholar 

  9. Barton, K. A., and Brill, W. J.: Prospects in plant genetic engineering. In Biotechnology and Biological Frontiers (P. H. Abelson, ed.), American Association for the Advancement of Science, Washington, D. C., pp. 121–131, 1984.

    Google Scholar 

  10. Baan, R. A., Lansbergen, M. J., deBruin, P. A. F., Willems, M. I., and Lohman, P. H. M.: The organ-specific induction of DNA adducts in 2-acetylaminofluorene-treated rats, studied by means of a sensitive immunochemical method. Mutat. Res. 150: 23–32, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. McCormick, D.: Human gene therapy: The first round. Biotechnology 3: 689–693, 1985.

    Article  Google Scholar 

  12. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C., and Evans, R. M.: Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes, Nature 300: 61 1615, 1982.

    Google Scholar 

  13. Rawls, R.: Gene therapy. Chemical and Engineering News 62: 40, 1984.

    Google Scholar 

  14. Brusick, D. J.: Mutagenicity and carcinogenicity correlations between bacteria and rodents. In Cellular Systems for Toxicity Testing 407 (G. M. Williams, V. C. Dunkel, and V. A. Ray, eds.), New York Academy of Sciences, New York, pp. 164–176, 1983.

    Google Scholar 

  15. Brusick, D. J.: The role of short-term testing in carcinogen detection. Chemosphere 5: 403–417, 1978.

    Article  Google Scholar 

  16. Shih, C., Shilo, B., Goldfarb, M. P., Dannenberg, A., and Weinberg, R. A.: Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc. Natl. Acad. Sci. USA 76: 5714–5718, 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Weinberg, R. A.: Use of transfection to analyze genetic information and malignant transformation. Biochim. Biophys. Acta 651 (1): 25–35, 1981.

    PubMed  CAS  Google Scholar 

  18. Bishop, J. M.: Cellular oncogenes and retroviruses. Annu. Rev. Biochem. 52: 301–354, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Evaluation of the Carcinogenic Risk of Chemicals to Humans. IARC October, 1982; suppl 4.

    Google Scholar 

  20. Garrett, N. E., Stock, H. F., Gross, M. R., and Waters, M. D.: An analysis of the spectra of genetic activity produced by known or suspected human carcinogens. Mutat. Res. 134: 89–111, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Aaronson, S. A., and Tronick, S. R.: Oncogenes. In Medical Genetics: 1984, Proceedings of symposium presented by the Foundation for Advanced Education in the Sciences, May 10–12, 1984, pp. 74–95.

    Google Scholar 

  22. Reddy, E. P., Reynolds, R. K., Santos, E., and Barbacid, M.: A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300: 145–152, 1982.

    Article  Google Scholar 

  23. Varmus, H. E.: Mutations of cellular oncogenes as a basis for neoplastic change. In Mutation, Cancer and Malformation ( E. H. Y. Chu and W. M. Generoso, eds.), Plenum Press, New York, 1984, pp. 61–77.

    Chapter  Google Scholar 

  24. Rowley, J. D.: Human oncogene locations and chromosome aberrations. Nature 301: 290–291, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Weisburger, J. H., and Williams, G. M.: The distinct health risk analyses required for genotoxic carcinogens and promoting agents. Environ. Health Perspect. 50: 233–245, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brusick, D. (1987). Applications from Biotechnology Research to Genetic Toxicology. In: Principles of Genetic Toxicology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1980-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1980-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1982-3

  • Online ISBN: 978-1-4899-1980-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics