Skip to main content

Fundamentals of Genetic Toxicity

  • Chapter
Principles of Genetic Toxicology

Abstract

The purpose of this chapter is to describe the genetic background and terminology essential for an understanding of genetic toxicology. Since the types of molecular lesions that chemicals induce in DNA and the resultant genetic damage are intimately tied to the structure and function of this molecule, it is essential to appreciate the basic structure of DNA and understand how it operates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzer, S.: Fine structure of a genetic region in bacteriophage. In Papers on Genetics: A Book of Readings (L. Levine, ed.), C. V. Mosby, St. Louis, pp. 287–294, 1971.

    Google Scholar 

  2. Starlinger, P.: DNA rearrangements in procaryotes. Annu. Rev. Genet. 11: 103–26, 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Yanofsky, C., Drapeau, G. R., Guest, J. R., and Carlton, B. C.: The complete amino acid sequence of the tryptophan synthetase A protein (a subunit) and its colinear relationship with the genetic map of the A gene. In Papers on Genetics: A Book of Readings (L. Levine, ed.), C. V. Mosby, St. Louis, pp. 335–337, 1971.

    Google Scholar 

  4. Kleinhofs, A., and Behki, R.: Prospects for plant genome modification by nonconventional methods. Ann. Rev. Genet. 11: 79–101, 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Brousseau, R., Scarpulla, R., Sung, W., Hsing, H. M., Narang, S. A., and Ulu, R.: Synthesis of a human insulin gene. V. Enzymatic assembly, cloning and characterization of the human proinsulin DNA. Gene 17: 279–289, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Stellwagen, R. H., and Cole, R. D.: Chromosomal proteins. Annu. Rev. Biochem. 38: 951–90, 1969.

    Article  PubMed  CAS  Google Scholar 

  7. Cattanach, B. M.: Control of chromosome inactivation. Annu. Rev. Genet. 9: 1–18, 1975.

    Article  PubMed  CAS  Google Scholar 

  8. Ris, H.: Chromosome structure. In Chemical Basis of Heredity (W. D. McElroy and B. Glass, eds.), John Hopkins Press, Baltimore, 1957.

    Google Scholar 

  9. Levine, R. P.: Genetics, Holt, Rheinhart and Winston, New York, 1962.

    Google Scholar 

  10. Ad Hoc Committee of the Environmental Mutagen Society and the Institute for Medical Research: Chromosome methodologies in mutation testing. Toxicol. Appl. Pharmacol. 22: 269–275, 1972.

    Article  Google Scholar 

  11. Strickberger, M. W.: Genetics, Macmillan, New York, 1968.

    Google Scholar 

  12. Vogel, E., and Sobels, F. H.: The function of Drosophila in genetic toxicology testing. In Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.), Plenum Press, New York, Chapter 38, pp. 93–142, 1976.

    Google Scholar 

  13. Brusick, D. J.: Alterations of germ cells leading to mutagenesis and their detection. Environ. Health Perspect. 24: 105–112, 1978.

    PubMed  CAS  Google Scholar 

  14. Badr, F. M., and Badr, R. S.: Studies on the mutagenic effect of contraceptive drugs. I. Induction of dominant lethal mutations in female mice. Mutat. Res. 26: 529, 1974.

    Article  PubMed  CAS  Google Scholar 

  15. Machemer, L., and Lorke, D.: Experiences with the dominant lethal test in female mice: Effects of alkylating agents and artificial sweeteners on pre-ovulatory oocyte stages. Mutat. Res. 29: 209, 1975.

    Article  PubMed  CAS  Google Scholar 

  16. Kreig, D. R.: Specificity of chemical mutagenesis. In Progress in Nucleic Acid Research, Vol. 2 (J. N. Davidson and W. E. Cohn, eds.), Academic Press, New York, pp. 12–568, 1963.

    Google Scholar 

  17. Ames, B. N., and Whitfield, H. J.: Frameshift mutagenesis in Salmonella. Cold Spring Harbor Symp. Quant. Biol. 31: 189–201, 1966.

    Article  Google Scholar 

  18. Brogger, A.: The chromatid gap-A useful parameter in genotoxicology? Cytogenet. Cell Genet. 33: 14–19, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Taylor, J. H.: Sister chromatid exchanges in tritium-labeled chromosomes. Genetics 43: 515–529, 1958.

    PubMed  CAS  Google Scholar 

  20. Wolff, S., and Perry, P.: Differential Giemsa staining of sister chromatids and the study of sister chromatid exchange without autoradiography. Chromosoma 48: 341–353, 1974.

    Article  PubMed  CAS  Google Scholar 

  21. Schmid, W.: Chemical mutagen testing on in vivo somatic mammalian cells. Agents Actions 3: 77–85, 1973.

    Article  PubMed  CAS  Google Scholar 

  22. Heddle, J.: A rapid in vitro test for chromosomal damage. Mutat. Res. 18: 187, 1973.

    Article  PubMed  CAS  Google Scholar 

  23. Matter, B. E., and Grauwiler, J.: Micronuclei in mouse bone marrow cells. A simple in vivo model for the evaluation of drug induced chromosomal aberrations. Mutat. Res. 23: 239–249, 1974.

    Article  PubMed  CAS  Google Scholar 

  24. San, R. H. C., and Stich, H. F.: DNA repair synthesis of cultured human cells as a rapid bioassay for chemical carcinogens. Int. J. Cancer 16: 284–291, 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Slater, E. E., Anderson, M. D., and Rosenkranz, H. S.: Rapid detection of mutagens and carcinogens. Cancer Res. 31: 970–73, 1971.

    PubMed  CAS  Google Scholar 

  26. Williams, G. M.: The detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res. 37: 1845–1851, 1977.

    PubMed  CAS  Google Scholar 

  27. Samson, L., and Schwartz, J. L.: Evidence for an adaptive DNA repair pathway in CHO and human skin fibroblast cell lines. Nature 287: 861–863, 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Hart, R. W., and Setlow, R. B.: Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc. Natl. Acad. Sci. USA 71 (6): 2169–2173, 1974.

    Article  PubMed  CAS  Google Scholar 

  29. Cerutti, P. A.: Repairable damage in DNA. In Proceedings of ICN-UCLA Symposia on Molecular and Cellular Biology, DNA Repair Mechanisms, (P. C. Harawalt, E. C. Friedberg, and C. F. Fox, eds.), Academic Press, New York, pp. 1–14, 1978.

    Google Scholar 

  30. Setlow, R. B.: Repair deficient human disorders and cancer. Nature 271: 713–717, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Ehling, U. H., Auerbeck, D., Cerutti, P. A., Friedman, J., Greim, H., Kolbye, Jr., A. C., and Mendelsohn, M. L.: Review of the evidence for the presence or absence of thresholds in the induction of genetic effects by gentoxic chemicals. Mutat. Res. 123: 281–341, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brusick, D. (1987). Fundamentals of Genetic Toxicity. In: Principles of Genetic Toxicology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1980-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1980-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1982-3

  • Online ISBN: 978-1-4899-1980-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics