Skip to main content

Antibody to an Enzyme as the Modulator in Separation-Free Enzyme Immunoassays with Electrochemical Sensor

  • Chapter
Electrochemical Sensors in Immunological Analysis

Abstract

Separation-free enzyme immunoassays for both haptens and macromolecules have been developed by using enzyme modulator as the label (Ngo and Lenhoff, 1980; Ngo, 1983; Finley et al., 1980; Place et al., 1983; Blecka et al., 1983; Bacquet and Twumasi, 1984; Brontman and Meyerhoff, 1984; Dona, 1985). In this chapter, enzyme modulators are defined as compounds capable of bringing about the modifications of the catalytic activity of an enzyme by inhibiting or enhancing (activating) the enzyme activity. The modification of an enzyme activity by enzyme modulators can be achieved through either noncovalent or covalent interactions between the enzyme and its modulators. Non-covalently interacting modulators are generally reversible modulators, such as reversible low molecular weight enzyme inhibitors (Webb, 1963) or enzyme activators (Wong, 1975), allosteric effectors (Stadtman, 1970), transition state analogs (Wolfenden, 1972; Lienhard, 1973; Ngo and Tunnicliff, 1981) and inhibitory antibodies to an enzyme (Marucci and Mayer, 1955; Visek et al., 1967; Cinader, 1976; Arnon, 1977). Covalently interacting enzyme modulators consist of irreversible modulators such as activesite directed irreversible enzyme inhibitors (Baker, 1967; Shaw, 1980), mechanism based inhibitors (Rando, 1974; Abeles, 1978) and enzyme mediated modification of enzyme activity (Krebs, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, R. H., 1978, Suicide enzyme inactivators, in: “Enzyme-Activated Irreversible Inhibitors”, N. Seiler, M.J. Jung and J. Koch-Weser, editors, pp. 1–12, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Alexander, P.W. and Maltra, C., 1982, Enzyme-linked immunoassay of human immunoglobulin G with the fluoride ion selective electrode, Anal. Chem. 54;68–71.

    Article  PubMed  CAS  Google Scholar 

  • Arnon, R., 1977, Immunochemistry of lysozyme, in.: “Immunochemistry of Enzyme and Their Antibodies”, M.R.J. Galton, editor, pp. 1–28, Wiley, New York.

    Google Scholar 

  • Bacquet, C. and Twumasi, D.Y., 1984, A homogeneous enzyme immunoassay with avidin-ligand conjugate as the enzyme-modulator. Anal. Biochem., 136: 387–490.

    Article  Google Scholar 

  • Baker, B.R., 1967, “Design of Active-Site Directed Irreversible Enzyme Inhibitors”, Wiley, New York.

    Google Scholar 

  • Blecka, L.J., Shaffar, M. and Dworschack, R., 1983, Inhibitor Enzyme Immunoassays for quantitation of various haptens: A review, in: “Immunoenzymatic Techniques”, S. Avrameas, P. Druet, R. Masseyeff and G. Feldman, editors, pp. 207–214, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Boitieux, J.L., Desmet, G. and Thomas, D., 1978, Potentiometric determination of hepatitis B surface antigen in biological fluids, Clin. Chim. Acta, 88: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Boitieux, J.L., Desmet, G. and Thomas, D., 1979, An antibody electrode, preliminary report on a new approach in enzyme immunoassay, 25: 318–321.

    CAS  Google Scholar 

  • Brontman, S.B. and Meyerhoff, M.E. 1984, Homogeneous enzyme-linked assays mediated by enzyme antibody; a new approach to electrode-based immunoassays, Anal. Chim. Acta, 162: 363–367.

    Article  CAS  Google Scholar 

  • Broyles, C.A. and Rechnitz, G.A., 1986, Drug antibody measurement by homogeneous enzyme immunoassay with amperometric detection, Anal. Chem., 58: 1242–1245.

    Article  Google Scholar 

  • Caras, S. and Janata, J., 1980, Field effect transitor sensitive to penicillin, Anal. Chem., 52: 1935–1937.

    Article  CAS  Google Scholar 

  • Chandler, H.M., Cox, J.C., Healy, K., MacGregor, A., Premier, R.R. and Hurrell, J.G.R., 1982, An investigation of the use of urease-antibody conjugates in enzyme immunoassays, J. Immunol. Meth., 53: 187–194.

    Article  CAS  Google Scholar 

  • Cheng, F.S. and Christian, G.D., 1977, Amperometric measurement of enzyme reactions with an oxygen electrode using oxidation of reduced nicotinamide adenine dinucleotide, Anal. Chem., 49: 1785–1788.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, F.S. and Christian, G.D., 1979, A coupled enzymatic method to measure blood lactate by amperometric monitoring of the rate of oxygen depletion with a Clark oxygen electrode, Anal. Chim. Acta, 91: 295–301.

    CAS  Google Scholar 

  • Cinader, B., 1976, Enzyme-antibody interaction, In: “Methods of Immunology and immunochemistry”, M. Chase and C. Williams, editor, pp. 313–375, Academic Press, New York.

    Google Scholar 

  • Dona, V., 1985, Homogeneous colorimetric enzyme inhibition immunoassay for Cortisol in human serum with Fab anti-glucose 6-phosphate dehydrogenase as a label modulator, J. Immunol. Meth., 82: 65–75.

    Article  CAS  Google Scholar 

  • Finley, P.R., Williams, R.J. and Lichti, D.A., 1980, Evaluation of a new homogeneous enzyme inhibitor immunoassay of thyroxine with use of a bichromatic analyzer, Clin. Chem., 26: 1723–1726.

    PubMed  CAS  Google Scholar 

  • Gebauer, C.R., Meyerhoff, M.E. and Rechnitz, G.A., 1979, Enzyme electrode-based kinetic assays of enzyme activities, Anal. Biochem., 95: 479–482.

    Article  PubMed  CAS  Google Scholar 

  • Gebauer, C.R. and Rechnitz, G.A., 1982, Deaminating enzyme labels for Potentiometric enzyme immunoassay, Anal. Biochem., 124: 338–348.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, E., Imagawa, M., Hashida, S., Yoshitake, S., Hamaguchi, Y. and Ueno, T., 1983, Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining, J. Imminoassay, 4: 209–327.

    Article  CAS  Google Scholar 

  • Joseph, J.P., 1985, An enzyme microsensor for urea on an ammonia gas electrode, Anal. Chim. Acta, 169: 149–156.

    Article  Google Scholar 

  • Kennett, R.H., McKearn, J.J. and Bechtol, K.B. editors, 1980, “Monoclonal Antibodies, Hybridoma: A New Dimension in Biological Analysis”, Plenum, Press, New York.

    Google Scholar 

  • Kennedy, J.H. Kricka, L.J. and Wilding, P., 1976, Proteinprotein coupling reactions and the applications of protein conjugates, Clin. Chim. Acta, 70: 1–31.

    Article  PubMed  CAS  Google Scholar 

  • Kirstein, D., Kirstein, L. and Scheller, F. 1985, Enayme electrode for urea with amperometric indication: Part 1 — Basic principle, Biosensors, 1: 117–130.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, E.G., 1972, Protein Kinases, in: “Curent Topics in Cellular Regulation”, B.L. Horecker and E.R. Stadtman, editors, pp. 99–133, Academic Press, New York.

    Google Scholar 

  • Lienhard, G.E., 1973, Enzymatic catalysis and transition state theory, Science, 180: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, C.R., 1985, An introduction to the concept and technology of Biosensors, Biosensors, 1: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Marucci, A.A. and Mayer, M.M., 1955, Quatitative studies on the inhibition of crystalline urease by rabbit antiurease Arch. Biochem. Biophys., 54: 330–340.

    Article  PubMed  CAS  Google Scholar 

  • Meyerhoff, M.E. and Rechnitz, G.A., 1979, Electrode based enzyme immunoassay using urease conjugates, Anal. Biochem., 95: 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Ngo, T.T., 1983, Enzyme modulator mediated immunoassay (EMMIA), Int. J. Biochem., 15: 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Ngo, T.T., 1985, Enzyme modulator as label in separation-free immunoassays: Enzyme modulator mediated immunoassay (EMMIA), in: “Enzyme-Mediated Immunoassay”, T.T. Ngo and H.M. Lenhoff, editors, pp. 52–72, Plenum Press, New York.

    Chapter  Google Scholar 

  • Ngo, T.T. and Lenhoff, H.M., 1980, Enzyme modulators as tools for the development of homogeneous enzyme immunoassays, FEBS Letters, 116: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Ngo, T.T. and Tunnicliff, G., 1981, Inhibition of enzymic reactions by transition state analogs: An approach for drug design, Gen. Pharmacol, 12: 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Nikolelis, D.P., Painton, C-D. D. and Mottola, H.A., 1979, The peroxidase-catalysed oxidation of NADH as an indicator reaction for repetitive determinations by by sample injection in closed flow-through systems: The determination of LDH in blood serum, Anal. Biochem., 97: 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Place, M.A., Carrico, R.J., Yeager, F.M., Albarella, J.P. and Boguslaski, R.C., 1983, A colorimetric immunoassay based on enzyme inhibitor method, J. Immunol. Meth., 61: 209–216.

    Article  CAS  Google Scholar 

  • Rando. R.R., 1974, Chemistry and enzymology of k cat inhibitors, Science, 185: 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Sevier, D.E., David, G.S., Martinis, J., Desmond, W.J., Bartholomew, R.M. and Wang, R., 1981, Monoclonal antibodies in clinical immunology, Clin. Chem., 22: 1806–1979.

    Google Scholar 

  • Shaw, E.N., 1980, Design of irreversible inhibitors, in: “Enzyme Inhibitors as Drugs”, M. Sandler, editor, pp. 24–42, University Park Press, Baltimore.

    Google Scholar 

  • Siddle, K., 1985, Properties and applications of monoclonal antibodies, in: “Alternative Immunoassays”, W.P. Collins, editor, pp. 13–37, Wiley, New York.

    Google Scholar 

  • Stadtman, E.R., 1970, Mechanism of enzyme regulation in metabolim, in: “The Enzyme”, P.D. Boyer, editor, Vol. 1, pp. 397–459, Academic Press, New York.

    Google Scholar 

  • Visek, W.J., Iwert, M.E., Nelson, N.S. and Rust, J.H., 1967, Some immunological properties of jack bean urease and its antibody, Arch. Biochem. Biophys., 122: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Vora, J.L., 1985, Monoclonal antibodies in enzyme research: Present and potential applications, Anal. Biochem., 144: 307–318.

    Article  PubMed  CAS  Google Scholar 

  • Webb, J.L., 1963, Enzyme and Metabolic Inhibitors, Vols. 1-3, Academic Press, New York.

    Google Scholar 

  • Wolfenden, R., 1972, Analog approaches to the structure of the transition state in enzyme reactions, Acc. Chem. Res., 5: 10–18.

    Article  CAS  Google Scholar 

  • Wong, J.T.F., 1975, “Kinetics of Enzyme Mechanism”, pp. 39–72, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ngo, T.T. (1987). Antibody to an Enzyme as the Modulator in Separation-Free Enzyme Immunoassays with Electrochemical Sensor. In: Ngo, T.T. (eds) Electrochemical Sensors in Immunological Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1974-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1974-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1976-2

  • Online ISBN: 978-1-4899-1974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics