Skip to main content

On the Direct Immunochemical Potentiometric Signal

  • Chapter

Abstract

In recent years, there have been several attempts to apply the high selectivity of an immunochemical reaction towards the development of an electrode which could measure solution concentrations of antigen or antibody. Conventional ion selective electrode (ISE) technology has not been used to design an ISE immunoelectrode per se because the molecular size of the immunochemical species places special requirements on the electrochemical properties of a sensing membrane; i. e., it would be difficult to build a membrane in such a way that it would allow high exchange current density of the immunochemical species of interest and exclude the permeation of small inorganic ions. Thus, since the mechanism that makes ion selective electrodes selective can not be directly applied in the case of an immunochemical reaction, several researchers have resorted to modifying the conditions under which a conventional ISE works so that an indirect determination of antibody/antigen concentration can be made. As the example electrode designs given in Table 1 show, the way in which these indirect immunoelectrodes function is the local ion activity that is measured at the ISE surface becomes modified in a way that is directly proportional to the antibody/antigen concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, M., Kato, S. and Suzuki, S., 1977, Immunoresponsive membrane I. Membrane potential change associated with an immunochemical reaction between membrane-bound antigen and free antibody, J. Membr. Sci., 2: 125–132.

    Article  CAS  Google Scholar 

  • Alexander, P.W. and Rechnitz, G.A., 1974, Ion-electrode based immunoassay and antibody-antigen precipitin reaction monitoring, Anal. Chem., 46: 1253–1257.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, P.W., Maitra, C., 1982, Enzyme-linked immunoassay of human immunoglobulin G with the fluoride ion selective electrode, Anal. Chem., 54(1): 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Boitieux, J.-L., Desmet, G. and Thomas, D. 1979, An “antibody electrode”: Preliminary report on a new approach in enzyme immunoassay, Clin. Chem., 25(2): 318–321.

    PubMed  CAS  Google Scholar 

  • Boitieux, J.-L. Lemzy, C., Desmet, G. and Thomas, D., 1981, Use of solid phase biochemistry for Potentiometric enzyme Immunoassay of 17 β-estradiol-preliminary report, Clin. Chim. Acta, 113(2): 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Brontman, S.B. and Meyerhoff, M., 1984, Homogeneous enzyme-linked assays mediated by enzyme antibodies; a new approach to electrode-based immunoassays, Anal. Chim. Acta, 162: 363–367.

    Article  CAS  Google Scholar 

  • Buck, R.P., 1982, Kinetics and drift of gate voltages for electrolyte bathed chemically sensitive semiconductor devices, IEEE Trans. Electron Dev., ED-29: 108–115.

    Article  CAS  Google Scholar 

  • Bush, D.L., Rechnitz, G.A., 1986, Antibody-sensing polymer membrane electrode using a proton carrier, Fresenius’ Z. Anal. Chem., 323(5): 491.

    Article  CAS  Google Scholar 

  • Collins, S. and Janata, J., 1982, A critical evaluation of the mechanism of potential response of antigen polymer membranes to the corresponding antiserum, Anal. Chim. Acta, 136: 93–99.

    Article  CAS  Google Scholar 

  • D’Orazio, P. and Rechnitz, G.A., 1977, Ion electrode measurements of complement and antibody levels using marker-loaded sheep red blood cell ghosts, Anal. Chem., 49: 2083–2086.

    Article  PubMed  Google Scholar 

  • D’Orazio, P. and Rechnitz, G.A., 1979, Potentiometric electrode measurement of serum antibodies used on the complement fixation test, Anal. Chim. Acta, 109(1): 25–31.

    Article  Google Scholar 

  • Dorn, W.H., 1985, “The Dipole Potential in Monolayers, Bilayers and Biological Membranes,” University of Toronto.

    Google Scholar 

  • Gebauer, C.R. and Rechnitz, G.A., 1981, Immunoassay studies using adenosine deaminase enzyme with Potentiometric rate measurement, Anal. Lett., 14(B2): 97–109.

    Article  CAS  Google Scholar 

  • Janata, J., 1975, An immunoelectrode, J. Am. Chem. Soc., 97: 2914–2916.

    Article  CAS  Google Scholar 

  • Janata, J., 1978, Thermodynamics of chemically sensitive field effect transistors, in: “Theory, Design and Biomedical Applications of Solid State Chemical Sensors,” P. Cheung, D. Fleming, W. Ko and M. Neuman, eds., CRC Press, West Palm Beach, Florida.

    Google Scholar 

  • Janata, J. and Huber, R.J., 1980, Chemically sensitive field effect transistors, in: “Ion Selective Electrodes,” M. Freiser, ed., Plenum Press, New York.

    Google Scholar 

  • Janata, J., 1983, Electrochemistry of chemically sensitive field effect transistors, Sensors and Actuators, 4: 255–265.

    Article  CAS  Google Scholar 

  • Janata, J., and Blackburn, G.F., 1984, Immunochemical Potentiometric sensors, Ann. N.Y. Acad. Sci., 428: 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Keating, M.Y., and Rechnitz, G.A., 1983, Cortisol antibody electrode, Analyst, 108: 766–768.

    Article  CAS  Google Scholar 

  • Keating, M.Y., and Rechnitz, G.A., 1984, Potentiometric digoxin antibody measurements with antigen-ionophore based membrane electrodes, Anal. Chem., 56: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Keating, M.Y. and Rechnitz, G.A., 1985, Potentiometric enzyme immunoassay for digoxin using polystyrene beads, Anal. Lett., 18(B1): 1–10.

    Article  CAS  Google Scholar 

  • Krull, U.J., Thompson, M., Vandenberg, E.T. and Wong, H.E., 1985, Langmuir-Blodgett film characteristics and phospholipid membrane ion conduction. I. Modification by cholesterol and oxidized derivatives, Anal. Chim. Acta, 174: 83–94.

    Article  CAS  Google Scholar 

  • Krull, U.J., Thompson, M. and Wong, H.E., 1986, Chemical modification of the bilayer lipid membrane biosensor dipole potential, Bioelectrochem. Bioenerg., 15: 371–382.

    Article  CAS  Google Scholar 

  • Liu, B.L. and Schultz, J.S., 1986, Equilibrium binding in immunosensors, IEEE Trans. Biomed. Eng., BME-33(2): 133–138.

    Article  Google Scholar 

  • Meyerhoff, M. and Rechnitz, G.A., 1977, Antibody binding measurements with hapten-selective membrane electrodes, Science, 195: 494–495.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, J.F., 1978, Technical difficulties remaining to the application of ISFET devices, in: “Theory, Design and Biomedical Applications of Solid State Chemical Sensors,” P. Cheung, D. Fleming, W. Ko, M. Neuman, eds., CRC Press, West Palm Beach, Florida.

    Google Scholar 

  • Shiba, K., Watanabe, T., Umezawa, Y., Fujiwara, S. and Momoi, H., 1980a, Liposome immunoelectrode, Chem. Lett, 2: 155–158.

    Article  Google Scholar 

  • Shiba, K., Umezawa, Y., Watanabe, T., Ogewa, S. and Fujiwara, S., 1980b, Thin-layer Potentiometric analysis of lipid antigen-antibody reaction by tetrapentylammoniurn (TPA+) ion loaded liposomes and TPA+ ion selective electrode, Anal. Chem., 52(11): 1610–1613.

    Article  PubMed  CAS  Google Scholar 

  • Solsky, R.L. and Rechnitz, G.A., 1979, Antibody-selective membrane electrodes, Science, 204: 1308–1309.

    Article  PubMed  CAS  Google Scholar 

  • Solsky, R.L. and Rechnitz, G.A., 1981, Preparation and properties of an antibody-selective membrane electrode, Anal. Chim. Acta, 123: 135–141.

    Article  CAS  Google Scholar 

  • Thompson, M., Krull, U.J., Bendell-Young, L.I., Lundstrom, I. and Nylander, C., 1985, Local surface dipolar perturbation of lipid membranes by phloretin and its analogues, Anal. Chim. Acta, 173: 129–140.

    Article  CAS  Google Scholar 

  • Thompson, M. and Krull U.J., 1986, The chemoreceptor-transducer interface in the development of biosensors, In: “Electrochemistry, Sensors and Analysis,” M.R. Smyth, J.G. Vos, eds., Proceedings of the International Conference Eleectroanalysis na h†Eireann, Ireland, Elsevier, Amsterdam.

    Google Scholar 

  • Umezawa, Y., Shiba, K., Watanabe, T., Ogawa, S. and Fujiwara, S., 1981, A mi croelectrode, in: “3rd Symp. on Ion Selective Electrodes,” E. Pungor, ed., Elsevier Co. & Akademiai Kiado, Mitrafured.

    Google Scholar 

  • Umezawa, Y., 1983, Ion-selective immunoelectrode, in: “Anal. Chem. Symp Ser.,” 17 (Chem. Sens.), Tokyo & Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Umezawa, Y., Sofue, S. and Takamoto, Y., 1984, Thin-layer ionselective electrode detection of anticardiolipid antibodies in syphilis serology, Talanta, 31: 375–378.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, N., Nagasawa, Y., Sawai, M., Sudo, T. and Tsubomura, H., 1978, Potentiometric investigations of antigen-antibody and enzyme-enzyme inhibitor reactions using chemically modified metal electrodes, J. Immunol. Meth., 22(3-4): 309–317.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Nagasawa, Y., Shuto, S., Tsubomura, H., Sawai, M. and Okumura, H., 1980, Antigen-antibody reaction investigated with use of a chemically modified electrode, Clin. Chem., 26(11): 1569–1572.

    PubMed  CAS  Google Scholar 

  • Yamamoto, N., Nagasawa, Y., Shuto, S. and Tsubomura, H., 1983, Potentiometric detection of biological substances by using chemically modified electrodes, in: “Anal. Chem. Symp. Ser., 17 (Chem. Sens.), Tokyo & Elsevier Science Publishers, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thompson, M., Tauskela, J.S., Krull, U.J. (1987). On the Direct Immunochemical Potentiometric Signal. In: Ngo, T.T. (eds) Electrochemical Sensors in Immunological Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1974-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1974-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1976-2

  • Online ISBN: 978-1-4899-1974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics