Advertisement

Hormonal Influences on Fetal and Perinatal Water Metabolism

  • Anthony M. Perks
  • Sidney Cassin

Abstract

Interest in the fluids and membranes which surround the fetus has persisted for many centuries. Hippocrates was probably the first to recognize that amniotic fluid was mainly fetal urine (Reynolds, 1972). However, Aristotle believed that the outer chorion contained residual seminal fluid (Harvey, 1651). By the time of Fabricius, opinions had changed, and to quote Harvey: “-the fluid within the amnion, wherein the foetus swims, consists of sweat; and that within the chorion of urine.”

Keywords

Amniotic Fluid Amniotic Membrane Bulk Flow Fetal Life Arginine Vasopressin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acher, R., and Fromageot, C., 1957, Relationship of oxytocin and vasopressin to active proteins of posterior pituitary origin, in: “The Neurohypophysis,” H. Heller, ed., pp. 11-16, Butterworths, London.Google Scholar
  2. Adolph, E. F., 1967, Ontogeny of volume regulations in embryonic extracellular fluids, Quart. Rev. Biol., 42:1.PubMedCrossRefGoogle Scholar
  3. Alexander, D. P., Britton, H. G., Forsling, M. L., Nixon, D. A., and Ratcliffe, J. G., 1973, Adrenocorticotrophin and vasopressin in foetal sheep and the response to stress, in: “The Endocrinology of Pregnancy and Parturition,” G. Pierrepoint, ed., pp. 112-125, Tenovus Library Series, Alpha Omega Alpha, Cardiff.Google Scholar
  4. Alexander, D. P., and Nixon, D. A., 1961, The foetal kidney, Brit. Med. Bull., 17:112.PubMedGoogle Scholar
  5. Ames, R. G., 1953, Urinary water excretion and neurohypophysial function in full term and premature infants shortly after birth, Pediatr., 12:272.Google Scholar
  6. Arthur, G. H., 1969, The fetal fluids of domestic animals, J. Reprod. Fertil. Suppl. 9, 45.Google Scholar
  7. Artman, H. G., Leake, R. D., Weitzman, R. E., Sawyer, W. H., and Fisher, D. A., 1984, Radioimmunoassay of vasotocin, vasopressin and oxytocin in human neonatal cerebrospinal and amniotic fluid, Dev. Pharmacol. Ther., 7:39.PubMedGoogle Scholar
  8. Bain, A. D., and Scott, J. S., 1960, Renal agenesis and severe urinary tract dysplasia. A review of 50 cases with particular reference to the associated anomalies, Brit. Med. J., 1:841.PubMedCrossRefGoogle Scholar
  9. Barnes, R. J., 1976, Water and mineral exchange between maternal and fetal fluids, in: “Fetal Physiology and Medicine,” R. W. Bear and P. W. Nathanielsz, eds., pp. 194-215, W. B. Saunders, Philadelphia.Google Scholar
  10. Barnes, A. C., and Seeds, A. E., 1972, The water metabolism of the fetus, pp. 32-47, Charles C. Thomas, Springfield, Illinois.Google Scholar
  11. Benirschke, K., and McKay, D. G., 1985, The antidiuretic hormone in fetus and infant, Obstet. Gynecol., 1:638.Google Scholar
  12. Bourne, G., 1962, The Human Amnion and Chorion, pp. 276, Year Book Medical Publishers, Inc., Chicago.Google Scholar
  13. Bradley, R. M., and Mistretta, C. M., 1973, The sense of taste and swallowing activity in foetal sheep, in: “Foetal and Neonatal Physiology,” R. S. Comline, K. W. Cross, G. S. Dawes, and P. W. Nathanielsz, eds., pp. 77, Cambridge University, Cambridge.Google Scholar
  14. Brown, D., Grosso, K. A., and DeSousa, R. K., 1983, Correlation between water flow and intramembrane particle aggregation in toad epidermis, Am. J. Physiol., 245:C334.PubMedGoogle Scholar
  15. Brown, M. J., Olver, R. E., Ramsden, C. A., Strang, L. B., and Walters, D. V., 1983, Effects of adrenalin and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb, J. Physiol. (Lond.), 344:137.Google Scholar
  16. Brown, P. C., and Brown, S. C., 1982, Effects of hypophysectomy and prolactin on the water-balance response of the newt, Taricha torsa, Gen. Comp. Endocrinol. 46:7.PubMedCrossRefGoogle Scholar
  17. Brunn, F., 1921, Beitrag zur Kenntnis der Wirkung von Hypophysenextrakten auf der Wasserhaushalt de Frosches, Z. Ges. Exp. Med., 25:170.CrossRefGoogle Scholar
  18. Burton, A. M., and Forsling, M., 1972, Hormone content of the neurohypophysis in foetal, newborn and adult guinea pigs, J. Physiol. (Lond.), 221:6P.Google Scholar
  19. Capek, K., Dlouha, H., Fernandez, J., and Popp, M., 1968, Regulation of proximal tubular reabsorption in early postnatal period of infant rats: micropuncture study, Proc. Int. Union Physiol. Sci., 7:72.Google Scholar
  20. Cassin, S., Dyer, R., Gause, G., and Perks, A. M., 1986, The effects of loop diuretics and ouabain on lung liquid secretion in fetal sheep and guinea pig, J. Physiol. (Lond.), 371; 240P.Google Scholar
  21. Cassin, S., and Perks, A. M., 1982, Studies of factors which stimulate lung fluid secretion in fetal goats, J. Devel. Physiol., 4:311.Google Scholar
  22. Challis, J. R. G., Robinson, J. S., Rurak, D. W., and Thorburn, G. D., 1976, The development of endocrine function in the human fetus, in: “The Biology of Human Fetal Growth,” D. F. Roberts and A. M. Thompson, eds., pp. 149-194, Taylor and Francis, London.Google Scholar
  23. Chard, T., Hudson, C. N., Edwards, C. R. W., and Boyd, N. R. H., 1971, Release of oxytocin and vasopressin by the human foetus during labour, Nature (Lond.), 234:352.CrossRefGoogle Scholar
  24. Danforth, D. N., and Hull, R. W., 1958, The microscopic anatomy of the fetal membranes with particular reference to the detailed structure of the amnion, Am. J. Obstet. Gynecol., 75:536.PubMedGoogle Scholar
  25. Davis, W. L., Jones, R. G., Hagler, H. K., Goodman, D. B. P., and Knight, J. P., 1981, Intracellular water transport in the actions of ADH, in: “Hormonal Regulation of Epithelial Transport of Ions and Water,” W. N. Scott and D. B. P. Goodman, eds., Vol. 372, pp. 118-130, Annals of the New York Academy of Sciences.Google Scholar
  26. Diamond, J. M., 1971, Standing-gradient model of fluid transport in epithelia, Fed. Proc., 30:6.PubMedGoogle Scholar
  27. Dicker, S. E., and Tyler, C., 1953a, Vasopressor and oxytocic activities of the pituitary glands of rats, guinea-pigs and cats and of human foetuses, J. Physiol. (Lond.), 121:206.Google Scholar
  28. Dicker, S. E., and Tyler, C., 1953b, Estimation of the antidiuretic, vasopressor and oxytocic hormones in the pituitary glands of dogs and puppies, J. Physiol. (Lond.), 120:141.Google Scholar
  29. Dogterom, J., Snidjewint, F. G. M., Pevet, P., and Swaab, D. F., 1980, Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and foetal pituitary gland: failure to demonstrate vasotocin in mammals, J. Endocrinol., 84:115.PubMedCrossRefGoogle Scholar
  30. Elliot, P. M., and Inman, W. H. W., 1961, Volume of liquor amnii in normal and abnormal pregnancy, Lancet, 2:835.CrossRefGoogle Scholar
  31. Ervin, M. G., Ross, M. G., Leake, R. D., and Fisher, D. A., 1986, Fetal recirculation of amniotic fluid arginine vasopressin, Am. J. Physiol., 250:E253.PubMedGoogle Scholar
  32. Fawcett, D. W., 1965, Surface specializations of absorbing cells, J. Histochem. Cytochem., 13:75.PubMedCrossRefGoogle Scholar
  33. Fawcett, D. W., 1981, The Cell, 2nd edition, W. B. Saunders Co., Philadelphia.Google Scholar
  34. Flexner, L. B., and Gellhorn, A., 1942, The transfer of water and sodium to the amniotic fluid of the guinea pig, Am. J. Physiol., 136:757.Google Scholar
  35. France, V., 1976, Active sodium uptake by the skin of fetal sheep and pigs, J. Physiol. (Lond.), 258:377.Google Scholar
  36. France, V. M., Stanier, M. W., and Wooding, F. B. P., 1976, The effect of hormones and of an osmotic gradient on the structure and properties of mammalian foetal urinary bladder in vitro, J. Physiol. (Lond.), 258:393.Google Scholar
  37. Friesen, H., Hwang, P., Guyda, H., Tolis, G., Tyson, J., and Myers, R., 1972, A radioimmunoassay for human prolactin, in: “Prolactin and Carcinogenesis,” A. R. Boyne and E. Griffiths, eds., pp. 64-80, Alpha Omega Alpha, Cardiff.Google Scholar
  38. Haeckel, E, 1866, Generelle Morphologie der Organismen, Berlin.Google Scholar
  39. Harvey, W., 1651, De uteri membranis et humoribus, in: “De Generatione Animalium,” pp. 527-568, Ludovicum Elzevirium, Amsterdam. Translation quoted: Robert Willis, “The Works of William Harvey, M. D.,” 1965, The Sources of Science, 13:551, Johnson Reprint Corp., New York.Google Scholar
  40. Heller, H., 1961, Occurrence, storage and metabolism of oxytocin, in: “Oxytocin,” R. Caldeyro-Barcia and H. Heller, eds., pp. 3-23, Pergamon, New York.Google Scholar
  41. Heller, H., 1966, Hormone content of the hypothalamo-neurohypophysial system, Brit. Med. Bull., 22:227.PubMedGoogle Scholar
  42. Heller, H., and Lederis, K., 1959, Maturation of the hypothalamo-neurohypophysial system, J. Physiol. (Lond.), 147:299.Google Scholar
  43. Hirano, T., 1977, Prolactin and osmoregulation. Prolactin and hydromineral metabolism in the vertebrates, Gunma Symp. Endocrinol., 14:45.Google Scholar
  44. Holt, W. F., and Perks, A. M., 1975, The effect of prolactin on water movement through the isolated amniotic membrane of the guinea pig, Gen. Comp. Endocrinol., 26:153.PubMedCrossRefGoogle Scholar
  45. Holt, W. F., and Perks, A. M., 1977a, The influence of vasopressin on the passage of tritiated water through the isolated amniotic membrane and other tissues from the fetal guinea pig, Can. J. Zool., 55:1393.PubMedCrossRefGoogle Scholar
  46. Holt, W. F., and Perks, A. M., 1977b, The effect of prolactin on sodium flux through the isolated amniotic membrane of the guinea pig, Can. J. Zool., 55:1468.PubMedCrossRefGoogle Scholar
  47. Holton, P., 1948, A modification of the method of Dale and Laidlaw for standardization of posterior pituitary extract, Brit. J. Pharmacol., 3:328.PubMedGoogle Scholar
  48. Hoyes, A. D., 1975, Structure and function of amnion, Obstet. Gynec. Annual, 4:1.Google Scholar
  49. Hutchinson, D. L., Gray, M. J., Plentl, A. A., Alvarez, H., Caldeyro-Barcia, R., Kaplan, B., and Lind, J., 1959, The role of the fetus in the water exchange of the amniotic fluid of normal and hydramniotic patients, J. Clin. Invest., 38:971.PubMedCrossRefGoogle Scholar
  50. Imai, M., 1977, Effect of bumetanide and furosemide on the thick ascending limb of Henle’s loop of rabbits and rats perfused in vitro, Eur. J. Pharmacol., 41:409.PubMedCrossRefGoogle Scholar
  51. Jeffcoate, T. N. A., and Scott, J. S., 1959, Polyhydramnios and oligohydramnios, Can. Med. Assn. J., 80:77.Google Scholar
  52. Johnson, D. W., Hirano, T., Sage, M., Foster, R. C., and Bern, H. A., 1974, Time course of response of starry flounder (Platichthys stellatus) urinary bladder to prolactin and salinity transfer, Gen. Comp. Endocrinol., 24:373.PubMedCrossRefGoogle Scholar
  53. Josimovich, J. B., Weiss, G., and Hutchinson, D., 1974, Sources and disposition of pituitary prolactin in maternal circulation, amniotic fluid, fetus and placenta in the pregnant rhesus monkey, Endocrinology, 94:1364.PubMedCrossRefGoogle Scholar
  54. Jost, A., and Policard, A., 1948, Contribution experimentale a l’étude du developpement prenatal du poumon chez le lapin, Arch. Anat. Microscop. Morphol. Exp., 37:323.Google Scholar
  55. Kerpel-Fronius, E., 1970, Electrolyte and water metabolism, in: “Physiology of the Perinatal Period,” U. Stave, ed., pp. 643-678, Appleton-Century-Crofts, New York.Google Scholar
  56. King, B. F., 1978, A cytological study of plasma membrane modifications, intercellular junctions and endocytotic activity of amniotic epithelium, Anat. Rec., 190:113.PubMedCrossRefGoogle Scholar
  57. Kleinman, L. I., 1975, Fetal renal function and water and electrolyte balance, in: “The Mammalian Fetus,” E. Hafez, ed., pp. 120-153, Charles C. Thomas, Illinois.Google Scholar
  58. Kokko, J. P., 1984, Site and mechanism of action of diuretics, Am. J. Med., 77:11.PubMedCrossRefGoogle Scholar
  59. Lagercrantz, H., and Slotkin, T. A., 1986, The “stress” of being born, Sci. Amer., 254:100.PubMedCrossRefGoogle Scholar
  60. Leake, R. D., Ervin, M. G., Ross, M. G., Polk, D. H., Lam, R., and Fisher, D. A., 1985, Ovine fetal-maternal water transfer is independent of fetal prolactin levels, Pediat. Res., 19:986.PubMedCrossRefGoogle Scholar
  61. Leake, R. D., Palmer, S., Oakes, G. K., Artman, H., Morris, A. M., and Fisher, D. A., 1981, Arginine vasotocin inhibits ovine fetal/maternal water transfer, Pediat. Res., 15:483.CrossRefGoogle Scholar
  62. Leake, R. D., Stegner, H., Palmer, S. M., Oakes, G. K., and Fisher, D. A., 1983, Arginine vasopressin and arginine vasotocin inhibit ovine fetal/ maternal water transfer, Pediat. Res., 17:583.PubMedCrossRefGoogle Scholar
  63. Lederis, K., Fisher, A. W., Geonzon, R. M., Gill, V., Ko, D., and Raghavan, S., 1980, Arginine vasotocin in fetal, newborn and adult mammals, in: “Hormones, Adaptation and Evolution,” S. Ishii et al., eds., pp. 71-77, Japanese Scientific Scoeity Press, Tokyo/Springer Verlag, Berlin.Google Scholar
  64. Leffler, C. W., Crofton, J., Brooks, D. P., Share, L., Hessler, J. R., and Green, R. S., 1985, Changes in plasma arginine vasopressin during transition from fetus to newborn following minimal trauma delivery of lambs and goats, Biol. Neonate, 48:43.PubMedCrossRefGoogle Scholar
  65. Leontic, E. A., Schruefer, J. J., Andreassen, B., Pinto, H., and Tyson, J. E., 1979, Further evidence for the role of prolactin on human fetoplacental osmoregulation, Am. J. Obstet. Gynecol., 133:435.PubMedGoogle Scholar
  66. Leontic, E. A., and Tyson, J. E., 1977, Prolactin and fetal osmoregulation: water transport across isolated human amnion, Am. J. Physiol., 232:R124.PubMedGoogle Scholar
  67. Levina, S. E., 1968, Endocrine features in development of human hypothalamus, hypophysis, and placenta, Gen. Comp. Endocrinol., 11:151.PubMedCrossRefGoogle Scholar
  68. Lind, T., 1969, Biochemical changes in human liquor amnii during gestation, J. Reprod. Fertil. Suppl., 9:53.PubMedGoogle Scholar
  69. Lind, T., and Hytten, F. E., 1972, Fetal control of fetal fluids, in: “Physiological Biochemistry of the Fetus,” A. A. Hodari and F. G. Mariona, eds., pp. 54-65, Charles C. Thomas, Springfield, Illinois.Google Scholar
  70. Maetz, J., 1968, Salt and water metabolism, in: “Perspectives in Endocrinology; Hormones in the Lives of Lower Vertebrates,” E. J. W. Barrington and G. B. Jørgensen, eds., pp. 47–162, Academic Press, New York.Google Scholar
  71. Mainoya, J. R., 1975a, Further studies on the action of prolactin on fluid and ion absorption by the rat jejunum, Endocrinology, 96:1158.PubMedCrossRefGoogle Scholar
  72. Mainoya, J. R., 1975b, Analysis of the role of endogenous prolactin on fluid and sodium chloride absorption by the rat jejunum, J. Endocrinol., 67:343.PubMedCrossRefGoogle Scholar
  73. Mainoya, J. R., Bern, H. A., and Regan, J. W., 1974, Influence of ovine prolactin on transport of fluid and sodium chloride by the mammalian intestine and gallbladder, J. Endocrinol., 63:311.PubMedCrossRefGoogle Scholar
  74. Manku, M. S., Mtabaji, J. P., and Horrobin, D. F., 1975, Effect of cortisol, prolactin and ADH on the amniotic membrane, Nature (Lond.), 258:78.CrossRefGoogle Scholar
  75. Mellor, D. J., and Slater, J. S., 1971, Daily changes in amniotic and allantoic fluid during the last three months of pregnancy in conscious, unstressed ewes, with catheters in their foetal fluid sacs, J. Physiol. (Lond.), 217:573.Google Scholar
  76. Montagna, W., and Parakkal, P. F., 1974, The Structure and Function of Skin, 3rd Edition, Academic Press, New York.Google Scholar
  77. Munsick, R. A., 1960, Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues, Endocrinology, 66:451.CrossRefGoogle Scholar
  78. Neacsu, C., 1972, The mechanism of antigonadotrophic action of a polypeptide extracted from a bovine pineal gland, Rev. Roum. Physiol., 9:161.PubMedGoogle Scholar
  79. North, P. M., and Segal, M. B., 1976, A study of the permeability properties of the guinea pig amniotic membrane, J. Physiol. (Lond.), 256:245.Google Scholar
  80. Olver, R. E., 1977, Fetal lung liquids, Fed. Proc., 36:2669.PubMedGoogle Scholar
  81. Olver, R. E., 1983, Fluid balance across the fetal alveolar epithelium, Amer. Rev. Resp. Dis., 127:S33.PubMedGoogle Scholar
  82. Olver, R. E., Ramsden, C. A., and Strang, L. B., 1981, Adrenaline-induced changes in net lung liquid volume flow across the pulmonary epithelium of the fetal lamb: evidence for active sodium transport, J. Physiol. (Lond.), 319:38.Google Scholar
  83. Olver, R. E., and Strang, L. B., 1974, Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb, J Physiol. (Lond.), 241:327.Google Scholar
  84. Parakkal, P. F., and Alexander, N. J., 1972, Keratinization: A Survey of Vertebrate Epithelia, Academic Press, New York.Google Scholar
  85. Parke, L., 1973, Detection of prolactin activity by bioassay in human amniotic fluid, J. Endocrinol., 58:137.PubMedCrossRefGoogle Scholar
  86. Parker, R. E., 1973, Introductory Statistics for Biology, pp. 19-20, Edward Arnold, London.Google Scholar
  87. Pavel, S., 1975, Vasotocin biosynthesis by neurohypophysial cells from human fetuses. Evidence of its ependymal origin, Neuroendocrinology, 19:150.PubMedCrossRefGoogle Scholar
  88. Perks, A. M., 1977, Developmental and evolutionary aspects of the neurohypophysis, Amer. Zool., 17:833.Google Scholar
  89. Perks, A. M., and Cassin, S., 1982, The effects of arginine vasopressin and other factors on the production of lung fluid in fetal goats, Chest, 81S:63S.CrossRefGoogle Scholar
  90. Perks, A. M., and Cassin, S., 1985a, The effects of arginine vasopressin on lung liquid secretion in chronic fetal sheep, in: “The Physiological Development of the Fetus and Newborn,” C. T. Jones and P. W. Nathanielsz, eds., pp. 253–257, Academic Press, London.Google Scholar
  91. Perks, A. M., and Cassin, S., 1985b, The rate of production of lung liquid in fetal goats, and the effect of expansion of the lungs, J. Develop. Physiol., 7:149.Google Scholar
  92. Perks, A. M., and Vizsolyi, E., 1973, Studies of the neurohypophysis in foetal mammals, in: “Foetal and Neonatal Physiology,” R. S. Comline, K. W. Cross, G. S. Dawes and P. W. Nathanielsz, eds., pp. 430–438, Cambridge University Press, Cambridge.Google Scholar
  93. Perks, A. M., Vizsolyi, E., Holt, W. F., and Cassin, S., 1978, Hormonal influences on the movement and composition of amniotic fluid, in: “Comparative Endocrinology,” P. J. Gaillard and H. H. Boer, eds., pp. 231–234, Elsevier/North Holland Biomedical Press, New York.Google Scholar
  94. Pohjavuori, M., and Fyhrquist, F., 1980, Hemodynamic significance of vasopressin in the newborn infant, J. Pediat., 97:462.PubMedCrossRefGoogle Scholar
  95. Reynolds, W. A., 1972, Fetal sources of amniotic fluid: an enigma, in: “Physiological Biochemistry of the Fetus,” A. A. Hodari and F. Mariona, eds., pp. 3-31, Charles C. Thomas, Springfield, Illinois.Google Scholar
  96. Riddle, C. V., 1985, Intramembranous response to cAMP in fetal epidermis, Cell Tissue Res., 241:687.PubMedCrossRefGoogle Scholar
  97. Robillard, J. E., Matson, J. R., Sessions, C., and Smith, F. G., 1979, Developmental aspects of renal tubular reabsorption of water in the lamb fetus, Pediat. Res., 13:1172.PubMedCrossRefGoogle Scholar
  98. Robillard, J. E., and Weitzman, R. E., 1980, Developmental aspects of the fetal renal response to exogenous arginine vasopressin, Am. J. Physiol., 238:F407.PubMedGoogle Scholar
  99. Ross, M. G., Ervin, G., Leake, R. D., Fu, P., and Fisher, D. A., 1984, Fetal lung liquid regulation by neuropeptides, Am. J. Obstet. Gynecol., 150:421.PubMedGoogle Scholar
  100. Ross, M. G., Ervin, M. G., Leake, R. D., Oakes, G., Hobel, C., and Fisher, D. A., 1983, Bulk flow of amniotic fluid water in response to maternal osmotic challenge, Am. J. Obstet. Gynecol., 147:697.PubMedGoogle Scholar
  101. Roy, C., and Ausiello, D. A., 1981, Regulation of vasopressin binding to intact cells, in: “Hormonal Regulation of Epithelial Transport of Ions and Water,” W. N. Scott and D. B. P. Goodman, eds., Vol. 372, pp. 92-105, Annals of the New York Academy of Sciences.Google Scholar
  102. Rurak, D. W., and Gruber, N. C., 1984, The effect of vasopressin on fetal oxygenation in sheep, Can. J. Physiol. Pharmacol., 62:27.PubMedCrossRefGoogle Scholar
  103. Sawyer, W. H., 1960, Increased water permeability of the bullfrog (Rana catesbiana) bladder in vitro in response to synthetic oxytocin and arginine vasotocin and to neurohypophysial extracts from non-mammalian vertebrates, Endocrinology, 66:112.PubMedCrossRefGoogle Scholar
  104. Sawyer, W. H., 1961, Biologic assays for oxytocin and vasopressin, Methods Med. Res., 9:210.PubMedGoogle Scholar
  105. Seeds, A. E., 1965, Water metabolism of the fetus, Am. J. Obstet. Gynecol., 92:727.PubMedGoogle Scholar
  106. Seeds, A. E., 1967, Water transfer across the human amnion in response to osmotic gradients, Am. J. Obstet. Gynecol., 98:568.PubMedGoogle Scholar
  107. Seeds, A. E., 1972, Amniotic fluid, in: “The Water Metabolism of the Fetus,” A. C. Barnes and A. E. Seeds, eds., pp. 48-73, Charles C. Thomas, Springfield, Illinois.Google Scholar
  108. Skowsky, W. R., Bashore, R. A., Smith, F. G., and Fisher, D. A., 1973, Vasopressin metabolism in the foetus and newborn, in: “Foetal and Neonatal Physiology,” R. S. Comline, K. W. Cross, G. S. Dawes and P. W. Nathanielsz, eds. pp. 439–447, Cambridge University Press, Cambridge.Google Scholar
  109. Skowsky, W. R., and Fisher, D. A., 1977, Fetal neurohypophysial arginine vasopressin and arginine vasotocin in man and sheep, Pediat. Res., 11:627.PubMedCrossRefGoogle Scholar
  110. Spring, K. R., and Hope, A., 1978, Size and shape of the lateral intercellular spaces in a living epithelium, Science, 200:54.PubMedCrossRefGoogle Scholar
  111. Spring, K. R., and Hope, A., 1979, Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder, J. Gen. Physiol., 73:287.PubMedCrossRefGoogle Scholar
  112. Stark, R., Hussain, K., Daniel, S., Milliez, J., Morishima, L., and James, L. S., 1977, Characteristics of vasopressin (AVP) release during adrenocorticotrophin (ACTH) induced parturition in the lamb, Pediat. Res., 11:412.CrossRefGoogle Scholar
  113. Stark, R. I., Daniel, S. S., Hussain, K. M., James, L. S., and Vande Wiele, R. L., 1979, Arginine vasopressin during gestation and parturition in sheep fetus, Biol. Neonate, 35:235.PubMedCrossRefGoogle Scholar
  114. Strang, L. B., 1977, Neonatal Respiration; Physiological and Clinical Studies, p. 316, Blackwell Scientific Publications, Oxford.Google Scholar
  115. Thornburg, K. L., Binder, N. D., and Faber, J., 1979, Diffusion permeability and ultrafiltration-reflection-coefficients of Na+ and Cl~ in the nearterm placenta of the sheep, J. Develop. Physiol., 1:47.Google Scholar
  116. Tiedman, K., 1979, The amniotic, allantoic and yolk-sac epithelia of the cat: SEM and TEM studies, Anat. Embryol., 158:75.CrossRefGoogle Scholar
  117. Tormey, J., and Diamond, J. M., 1967, The ultrastructural route of fluid transport in rabbit gallbladder, J. Gen. Physiol., 50:2031.PubMedCrossRefGoogle Scholar
  118. Vizsolyi, E., and Perks, A. M., 1969, New neurohypophysial principle in foetal mammals, Nature (Lond.), 223:1169.CrossRefGoogle Scholar
  119. Vizsolyi, E., and Perks, A. M., 1974, The effect of arginine vasotocin on the isolated amniotic membrane of the guinea pig, Gen. Comp. Endocrinol., 52:371.Google Scholar
  120. Vizsolyi, E., and Perks, A. M., 1976a, Neurohypophysial hormones in fetal life and pregnancy. I. Pharmacological studies in the sheep (Ovis aries), Gen. Comp. Endocrinol., 29:28.PubMedCrossRefGoogle Scholar
  121. Vizsolyi, E., and Perks, A. M., 1976b, Neurohypophysial hormones in fetal life and pregnancy. II. Chromatographic studies in the sheep (Ovis aries), Gen. Comp. Endocrinol., 29:41.PubMedCrossRefGoogle Scholar
  122. Vosburgh, G. J., Flexner, L. B., Cowie, D. B., Hellman, L. M., Procter, N. K., and Wilde, W. S., 1948, The rate of renewal in women of the water and sodium of the amniotic fluid as determined by tracer techniques, Am. J. Obstet. Gynecol., 56:1156.PubMedGoogle Scholar
  123. Wagner, G., and Tygstrup, I., 1963, Oligohydramnios and urinary malformations in early human pregnancy, Acta Path. Micro. Scand., 59:273.CrossRefGoogle Scholar
  124. Walters, D. V., and Olver, R. E., 1978, The role of catecholamines in lung liquid absorption at birth, Pediat. Res., 12:239.PubMedCrossRefGoogle Scholar
  125. Watson, B. P., 1906, Withdrawal of the liquor amnii, J. Obstet. Gynecol. Brit. Emp., 9:15.Google Scholar
  126. Yakovleva, I. V., 1965, Neirosekretornaga gipotalmo-gipofizarnaya sistema v rannem ontogeneze pozvonochnukha zhivotnykh i cheloveka, Arkhiv. Anat. Gist. i Embryol., 48:79.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Anthony M. Perks
    • 1
    • 2
  • Sidney Cassin
    • 1
    • 2
  1. 1.Department of ZoologyUniversity of British ColumbiaVancouverCanada
  2. 2.Departments of Physiology and PediatricsUniversity of FloridaGainesvilleUSA

Personalised recommendations