Skip to main content

Accelerator Mass Spectrometry as a Bioanalytical Tool for Nutritional Research

  • Chapter
Mathematical Modeling in Experimental Nutrition

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 445))

Abstract

Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but is also available for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram-sized samples. Its advantages over non-isotopic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker JJ; Day JP; Priest ND; Newton D; Drumm PV; Lilley JS; Newton GWA. Development of A1-26 accelerator mass spectrometry for aluminum absorption experiments in humans. Nuc Inst & Meth, 1992, B68:319–322.

    Article  CAS  Google Scholar 

  • Bogen KT; Keating GA; Vogel JS. In vitro kinetics for non-steady-state uptake of chlorinated solvents from dilute aqueous solutions into human skin. The Toxicologist, 1995, 15:318.

    Google Scholar 

  • Bogen KT; Keating GA; Vogel JS. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications. Pred Percut Penet, 1996, 4B: 195–198.

    Google Scholar 

  • Buchholz BA; Pawley NH; Vogel JS; Mauthe RJ. Pyrethroid decrease in CNS from nerve-agent pretreatment. J App Tox, 1997, 17:231–4.

    Article  CAS  Google Scholar 

  • Creek MR; Frantz CE; Fultz E; Haack K; Redwine K; Shen N; Turteltaub KW; Vogel JS. 14C AMS quantification of biomolecular interactions using microbore and plate separations. Nuc Inst & Meth, 1994, B92:454–458.

    Article  Google Scholar 

  • Day JP; Barker J; King SJ; Miller RV; Templar J; Lilley JS; Drumm PV; Newton GWA; Fifield K; Stone JOH; Allan GL; Edwardson JA; Moore PB; Ferrier IN; Priest ND; Newton D; Talbot RJ; Brock JH; Sanchez L; Dobson CB; Itzhaki RF; Radunovic A; Bradbury MWB. Biological chemistry of aluminum studied using Al-26 and accelerator mass spectrometry. Nuc Inst & Meth, 1994, B92:463–468.

    Article  Google Scholar 

  • Elmore D; Bhattacharyya MH; Sacco-Gibson N; Peterson DP. Ca-41 as a long-term biological tracer for bone resorption. Nuc Inst & Meth, 1990, B52:531–5.

    Article  CAS  Google Scholar 

  • Fink D; Middleton R; Klein J; Sharma P. /sup 41/Ca: Measurement by accelerator mass spectrometry and applications. Nuc Inst & Meth, 1990, B47:79–96.

    Article  CAS  Google Scholar 

  • Frantz CE; Bangerter C; Fultz E; Mayer KM; Vogel JS; Turteltaub KW. Dose-Response studies of MeIQx in rat liver and liver DNA at low doses. Carcinogenesis, 1995, 16:367–373.

    Article  CAS  Google Scholar 

  • Freeman SPHT; King JC; Vieira NE; Woodhouse LR; Yergey AL. Human calcium metabolism including bone resorption measured with /sup 41/Ca tracer. Nuc Inst & Meth, 1997, B123:266–70.

    Article  Google Scholar 

  • Garman A. Non-radioactive Labeling: A Practical Introduction. Vol 1: Biological Techniques. Sattelle DB; Ed. Academic Press Ltd: London. 1997.

    Google Scholar 

  • Gartenmann P; Schnabel C; Suter M; Synal HA. /sup 60/Fe measurements with an EN tandem accelerator. Nuc Inst & Meth, 1997, B123:132–6.

    Article  Google Scholar 

  • Harris WR; Berthon G; Day JP; Exley C; Flaten TP; Forbes WF; Kiss T; Orvig C; Zatta PF. Speciation of aluminum in biological systems. J Tox Envir Health, 1996, 48:543–68.

    Article  CAS  Google Scholar 

  • Hughey BJH; Klinkowstein RE; Shefer RE; Skipper PL; Tannenbaum SR; Wishnok JS. Design of a compact 1MV AMS system for biomedical research. Nuc Inst & Meth, 1997, B123:153–158.

    Article  Google Scholar 

  • Jiang Songsheng, Jingru Guo, Shan Jiang, Chunsheng Li, Anzhi Cui, Ming He, Shaoyong Wu, and Shilin Li. Determination of the half-life of/sup 79/Se with the accelerator mass spectrometry technique. Nuc Inst & Meth, 1997, B123:405–9.

    Article  Google Scholar 

  • Jouhanneau P; Lacour B; Raisbeck G; Yiou F; Banide H; Brown E; Drueke T. Gastrointestinal absorption of aluminum in rats using 26A1 and accelerator mass spectrometry. Clin Nephr, 1993, 40:244–8.

    CAS  Google Scholar 

  • Kautiainen A; Vogel JS; Turteltaub KW. Dose-dependent trichloroethylene binding to hepatic DNA and protein at low dose. Chemico-Bio Int, 1997, 106:109–121.

    Article  CAS  Google Scholar 

  • Keating GA; Naik A; McKone TE; Guy RH; Vogel JS. Assessment of dermal exposure to drinking water contaminants — New measurements and models, in: Proc Int Symp: Assessing and Managing Health Risks from Drinking Water Contamination: Approaches and Applications. Reichard EG; Zapponi GA; Eds. IAHS Press. 1995.

    Google Scholar 

  • King SJ; Day JP; Oldham C; Popplewell JF; Ackrill P; Moore PB; Taylor GA; Edwardson JA; Fifield LK; Liu K; Cresswell RG. The influence of dissolved silicate on the physiological chemistry of aluminium, studied in humans using tracer /sup 26/Al and accelerator mass spectrometry. Nuc Inst & Meth, 1997, B123:254–8.

    Article  Google Scholar 

  • Kislinger G; Steinhausen C; Alvarez-Bruckmann M; Winklhofer C; Ittel TH; Nolte E. Investigations of the human aluminum biokinetics with /sup 26/A1 and AMS. Nuc Inst & Meth, 1997, B123:259–65.

    Article  Google Scholar 

  • Korschinek G; Müller D; Faestermann T; Gillitzer A; Nolte E; Paul M. Trace analysis of Fe-55 in biosphere and technology by means of AMS. Nuc Inst & Meth, 1990, B52:498–501.

    Article  CAS  Google Scholar 

  • Marchetti AA; Hainsworth LJ; McAninch JE; Leivers MR; Jones PR; Proctor ID; Straume T. Ultraseparation of nickel from copper metal for the measurement of/sup 63/Ni by AMS. Nuc Inst & Meth, 1997, B123:230–4.

    Article  Google Scholar 

  • McAninch JE; Hainsworth LJ; Marchetti AA; Leivers MR; Jones PR; Dunlop AE; Mauthe R; Vogel JS; Proctor ID; Straume T. Measurement of 63Ni and 59Ni by AMS using characteristic projectile X-rays. Nuc Inst & Meth, 1997, B123:137–143.

    Article  Google Scholar 

  • Mellon FA; Sandtröm B. Stable Isotopes in Human Nutrition. Academic Press Ltd.: London. 1996.

    Google Scholar 

  • Mous DJW; Purser KH; Fokker W; Van den Broek R; Koopmans RB. A compact 14C isotope ratio mass spectrometer for biomedical applications. Nuc Inst & Meth, 1997, B123:159–162.

    Article  Google Scholar 

  • Nishiizumi K; Murrell MT; Arnold JR; Elmore D; Ferraro RD; Gove HE; Finkel RC. Cosmic-ray-produced /sup 36/C1 and /sup 53/Mn in Allan Hills-77 meteorites. Earth and Planetary Science Letters, 1981, 52:31–8.

    Article  CAS  Google Scholar 

  • Priest ND; Newton D; Day JP; Talbot RJ; Warner AJ. Human metabolism of aluminium-26 and gallium-67 injected as citrates. Hum Ex Tox, 1995, 14:287–93.

    Article  CAS  Google Scholar 

  • Priest ND; Taltot RJ; Austin JG; Day JP; King SJ; Fifield K; Cresswell RG. The bioavailability of 26A1-labelled aluminum citrate and aluminum hydroxide in volunteers. Biometals, 1996,9:221–8.

    Article  CAS  Google Scholar 

  • Robert ML; Velsko C; Turteltaub KW. Tritium AMS for biomedical applications. Nuc Inst & Meth, 1994, B92:459–462.

    Article  Google Scholar 

  • Scott EM. Proceedings: International workshop on intercomparison of radiocarbon laboratories, at Glasgow, Scotland. Radiocarbon, 1990,32 253–397.

    Google Scholar 

  • Steinhausen C; Gerisch P; Heisinger B; Hohl C; Kislinger G; Korschinek G; Niedermayer M; Nolte E; Dumitru M; Alvarez-Brueckmann M; Schneider M; Ittel TH. Medical application of/sup 26/A1. Nuc Inst & Meth, 1996, B113:479–83.

    Article  Google Scholar 

  • Stenstrom K; Leide-Svegborn S; Erlandsson B; Hellborg R; Skog G; Mattsson S; Nilsson LE; Nosslin B. A program for long-term retention studies of /sup 14/C-labelled compounds in man using the Lund AMS facility. Nuc Inst & Meth, 1997, B123:245–8.

    Article  Google Scholar 

  • Suter M; Jacob S; Synal HA. AMS of/sup 14/C at low energies. Nuc Inst & Meth, 1997, B123:148–52.

    Article  Google Scholar 

  • Turteltaub KW; Vogel JS; Balhorn R; Gledhill BL; Southon JR; Caffee MW; Finkel RC; Nelson DE; Proctor ID; Davis JC. Accelerator mass spectrometry in the biomedical sciences: applications in low-exposure biomedical and environmental dosimetry. Nuc Inst & Meth, 1990, B52:517–23.

    Google Scholar 

  • Turteltaub KW; Vogel JS; Frantz CE; Shen N. Fate and distribution of 2-amino-l-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) in mice at a human dietary equivalent dose. Cancer Res, 1992, 52:4682–4687.

    CAS  Google Scholar 

  • Vogel JS. Rapid production of graphite without contamination for biomedical AMS. Radiocarbon, 1992, 34:344–350.

    Google Scholar 

  • Vogel JS; Freeman SPHT; McAninch JE. Elements in biological AMS. Nuc Inst & Meth, 1997, B123:241–244.

    Article  Google Scholar 

  • Vogel JS; Turteltaub KW. Biomolecular tracing through accelerator mass spectrometry. Trends in Analytical Chemistry, 1992, 11:142–149.

    Article  CAS  Google Scholar 

  • Vogel JS; Turteltaub KW; Finkel R; Nelson DE. Accelerator mass spectrometry — Isotope quantification at attomole sensitivity. Analyt Chem, 1995, 67:A353–A359.

    Google Scholar 

  • Williams ML; Vogel JS; Ghadially R; Brown BE; Elias PM. Exogenous origin of n-alkanes in pathologic scale. Arch Derm, 1992, 128:1065–71.

    Article  CAS  Google Scholar 

  • Zoppi U; Suter M; Synal HA. Isobar separation with gas ionization counters in accelerator mass spectrometry. Nuc Inst & Meth, 1994, B89.262–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vogel, J.S., Turteltaub, K.W. (1998). Accelerator Mass Spectrometry as a Bioanalytical Tool for Nutritional Research. In: Clifford, A.J., Müller, HG. (eds) Mathematical Modeling in Experimental Nutrition. Advances in Experimental Medicine and Biology, vol 445. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1959-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1959-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1961-8

  • Online ISBN: 978-1-4899-1959-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics