Skip to main content

Designing a Radioisotope Experiment Using a Dymamic, Mechanistic Model of Protein Turnover

  • Chapter
  • 415 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 445))

Abstract

Many experiments require preliminary results in order to determine the best experimental design to fulfill the research objectives. Ranges of data values, sampling intervals and numbers of test subjects need to be determined before the experiment is conducted so that differences between treatments can be detected at the appropriate level of significance. Especially in radioisotope experiments where exposure and contamination need to be minimized, previous knowledge of experimental conditions can be invaluable in planning experiments. A model which represents current knowledge of the animal or system to be studied can be an important tool with which to identify appropriate experimental designs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes DM; Calvert CC; Klasing KC. Source of amino acids for tRNA acylation. Biochem J, 1992, 283:583–589.

    CAS  Google Scholar 

  • Barnes DM; Calvert CC; Klasing KC. Source of amino acids for tRNA acylation in growing chicks. Amino Acids, 1994, 7:67–278.

    Article  Google Scholar 

  • Bernier JF; Calvert CC. Effect of a major gene for growth on protein synthesis in mice. J Ani Sci, 1987, 65:982–995.

    CAS  Google Scholar 

  • Calvert CC; Klasing KC; Austic RE. Involvement of food intake and amino acid catabolism in the branchedchain amino acid antagonism in chicks. J Nutr, 1982, 112:627–635.

    CAS  Google Scholar 

  • Dice JF. Molecular determinants of protein half-lives in eucaryotic cells. FASEB J, 1987, 1:349–357.

    CAS  Google Scholar 

  • Hanigan MD; Calvert CC; DePeters EJ; Reis BL; Baldwin RL. Whole blood and plasma amino acid uptakes by lactating bovine mammary glands. J Dairy Sci, 1991, 74:2484–2490.

    Article  CAS  Google Scholar 

  • Hershey JWB. Translational control in mammalian cells. Ann Rev Biochem, 1991, 60:717–755.

    Article  CAS  Google Scholar 

  • Hider RC; Fern EB; London DR. Relationship between intracellular amino acids and protein synthesis in the extensor digitorum longus muscle of rats. Biochem J, 1969, 114:171–178.

    CAS  Google Scholar 

  • Hider RC; Fern EB, London DR. Identification in skeletal muscle of a distinct extracellular pool of amino acids, and its role in protein synthesis. Biochem J, 1971a, 121:817–827.

    CAS  Google Scholar 

  • Hider RC; Fern EB; London DR. The effect of insulin on free amino acid pools and protein synthesis in rat skeletal muscle in vitro. Biochem J, 1971b, 125:751–756.

    CAS  Google Scholar 

  • Johnson HA. A modeling investigation of whole body protein turnover based on leucine kinetics in rodents. Dissertation. 1997.

    Google Scholar 

  • Khairallah EA; Airhart J; Bruno MK; Puchalsky D; Khairallah L. Implications of amino acid compartmentation for the determination of rates of protein catabolism in livers in meal fed rats. Acta Biol Med Germ, 1977, 36:1735–1745.

    CAS  Google Scholar 

  • Khairallah EA; Mortimore GE. Assessment of protein turnover in perfused rat liver. J Biol Chem, 1976, 251:1375–1384.

    CAS  Google Scholar 

  • Kipnis DM; Reiss E; Helmreich E. Functional heterogeneity of the intracellular amino acid pool in mammalian cells. Biochimica et Biophysica Acta, 1961, 51:519–524.

    Article  CAS  Google Scholar 

  • Klausner RD; Sitia R. Protein degradation in the endoplasmic reticulum. Cell, 1990, 62:611–614.

    Article  CAS  Google Scholar 

  • Mitchell and Gauthier Assoc. Inc. ACSL: Advanced Continuous Simulation Language. MGA Inc.: Concord, Massachusetts. 1995.

    Google Scholar 

  • Negrutskii BS; Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci USA, 1991,88:4991–4995.

    Article  CAS  Google Scholar 

  • Negrutskii BS; Deutscher MP. A sequestered pool of aminoacyl-tRNA in mammalian cells. Proc Natl Acad Sci USA, 1992,89:3601–3604.

    Article  CAS  Google Scholar 

  • Negrutskii BS; Stapulionis R; Deutscher MP. Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci USA, 1994, 91:964–968.

    Article  CAS  Google Scholar 

  • Obled C. Personal communication. 1996.

    Google Scholar 

  • Obled C; Barre F; Millward DJ; Arnal M. Whole body protein synthesis: Studies with different amino acids in the rat. Am J Physiol, 1989, 257:E639–E646.

    CAS  Google Scholar 

  • Ovadi J. Physiological significance of metabolic channeling. J Theor Biol, 1991, 152:1–22.

    Article  CAS  Google Scholar 

  • Palmiter RD. Quantitation of parameters that determine the rate of ovalbumin synthesis. Cell, 1975, 4:189–197.

    Article  CAS  Google Scholar 

  • Peters T; Peters JC. The biosynthesis of rat serum albumin. J Biol Chem, 1972, 247:3858–3863.

    CAS  Google Scholar 

  • Pomposelli JJ; Palombo JD; Hamawy KJ; Bistrian BR; Blackburn GL; Moldawer LL. Comparison of different techniques for estimating rates of protein synthesis in vivo in healthy and bacteraemic rats. Biochem J, 1985,226:37–42.

    CAS  Google Scholar 

  • Rivett JA. Intracellular protein degradation. Essays Biochem, 1990, 25:39–73.

    CAS  Google Scholar 

  • Roberts S; Morelos BS. Regulation of cerebral metabolism of amino acids-IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo. J Neurochem, 1965, 12:373–387.

    Article  CAS  Google Scholar 

  • Smith CB; Deibler GE; Eng N; Schmidt K; Sokoloff L. Measurement of local cerebral protein synthesis in vivo: Influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci USA, 1988,85:9341–9345.

    Article  CAS  Google Scholar 

  • Smith CB; Sun Y. Influence of valine flooding on channeling of valine into tissue pools and on protein synthesis. Am J Physiol, 1995, 268:E735–E744.

    CAS  Google Scholar 

  • Sun Y; Deibler GE; Sokoloff L; Smith CB. Determination of regional rates of cerebral protein synthesis adjusted for regional differences in recycling of leucine derived from protein degradation into the precursor pool in conscious, adult rats. J Neurochem, 1992, 59:863–873.

    Article  CAS  Google Scholar 

  • Tovar AR; Tews JK; Torres N; Madsen DC; Harper AE. Competition for transport of amino acids into rat heart: Effect of competitors on protein synthesis and degradation. Metab Clin Exper, 1992, 41:925–933.

    Article  CAS  Google Scholar 

  • Vanenrooij WJ; Moonen H; VanLoon-Klaassen L. Source of amino acids used for protein synthesis in HeLa cells. Eur J Biochem, 1974, 50:297–304.

    Article  Google Scholar 

  • Vinayak M. A comparison of tRNA populations of rat liver and skeletal muscle during aging. Biochem Internat, 1987, 15:279–285.

    CAS  Google Scholar 

  • Voisin L; Breuille D; Combaret L; Pouyet C; Taillandier D; Aurousseau E; Obled C; Attaix D. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca-activated, and ubiquitin-proteosome proteolytic pathways. J Clin Invest, 1996, 97:1610–1617.

    Article  CAS  Google Scholar 

  • Waterlow JC; Garlick PJ; Millward DJ. Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland. 1978. p. 119.

    Google Scholar 

  • Wettenhall REH; London DR. Incorporation of amino acids into protein from an intracellular pool of lymphocytes. Biochimica et Biophysica Acta, 1975, 390:363–373.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, H.A., Calvert, C.C., Baldwin, R.L. (1998). Designing a Radioisotope Experiment Using a Dymamic, Mechanistic Model of Protein Turnover. In: Clifford, A.J., Müller, HG. (eds) Mathematical Modeling in Experimental Nutrition. Advances in Experimental Medicine and Biology, vol 445. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1959-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1959-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1961-8

  • Online ISBN: 978-1-4899-1959-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics