Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Muscle proteins turn over slowly and there are minimal diurnal changes in the size of the muscle protein pool in response to feeding and fasting. Nitrogen balance and tracer studies indicate that protein oxidation and net protein breakdown (degradation — synthesis) is not increased during dynamic exercise at intensities of ≤ 70% VO2max. An imbalance between muscle protein synthesis and degradation does exist during one leg knee extensor exercise and during two legged cycling in patients with glycogen Phosphorylase deficiency. In these latter cases amino acids liberated from the protein pool are used for synthesis of TCA-cycle intermediates and glutamine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, G., P. Felig, L. Hagenfeldt, R. Hendler, and J. Wahren. Substrate turnover during prolonged exercise in man—Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J. Clin. Invest. 53: 1080–1090, 1974.

    Article  PubMed  CAS  Google Scholar 

  2. Bennet, W.M., A.A. Connacher, C.M. Scrimgeour, K. Smith, and M.J. Rennie. Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clin. Sci. 76: 447–454, 1989.

    PubMed  CAS  Google Scholar 

  3. Bergström, J., P. Fürst, and E. Hultman. Free amino acids in muscle tissue and plasma during exercise in man. Clin. Physiol. 5: 155–160, 1985.

    Article  PubMed  Google Scholar 

  4. Carraro, F., T.D. Kimbrough and R.R. Wolfe. Urea kinetics in humans at two levels of exercise intensity. J. Appl. Physiol. 75: 1180–1185, 1993.

    PubMed  CAS  Google Scholar 

  5. Carraro, F., C.A. Stuart, W.H. Hartl, J. Rosenblatt, and R.R. Wolfe. Effect of exercise and recovery on muscle protein synthesis in human subjects. Am. J. Physiol. 259: E470–E476, 1990.

    PubMed  CAS  Google Scholar 

  6. Chang, T.W., and A.L. Goldberg. The origin of alanine produced in skeletal muscle. J. Biol Chem. 253: 3677–3684, 1978.

    PubMed  CAS  Google Scholar 

  7. Chang, T.W., and A.L. Goldberg. The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J. Biol. Chem. 253: 3685–3695, 1978.

    PubMed  CAS  Google Scholar 

  8. Cheng, K.N., P.J. Pacy, F. Dworzak, G.C. Ford, and D. Halliday. Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L-[1-13C,15N]leucine as the tracer. Clin. Sci. 73: 241–246, 1987.

    PubMed  CAS  Google Scholar 

  9. Dohm, G.L., V. Patel, and G.J. Kasperek. Regulation of muscle pyruvate metabolism during exercise. Biochem. Med. Met. Biol. 35: 26–266, 1986.

    Article  Google Scholar 

  10. Elia, M., A. Schlatmann, A. Goren, and S. Austin. Amino acid metabolism in muscle and in the whole body of man before and after ingestion of a single mixed meal. Am. J. Clin. Nutr. 49: 1203–1210, 1989.

    PubMed  CAS  Google Scholar 

  11. Eriksson, L.S., S. Broberg, O. Björkman, and J. Wahren. Ammonia metabolism during exercise in man. Clin. Physiol. 5: 325–336, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Essen, B., and L. Kaijser. Regulation of glycolysis in intermittent exercise in man. J. Physiol. 281: 499–511, 1978.

    PubMed  CAS  Google Scholar 

  13. Felig, P., T. Pozefsky, E. Marliss, and G.F. Canili. Alanine: a key role in gluconeogenesis. Science 167: 1003–1004, 1970.

    Article  PubMed  CAS  Google Scholar 

  14. Fick, A., and J. Wislecenus. On the origin of muscular power. Philos. Mag. 31: 485–503, 1866.

    Google Scholar 

  15. Fitts, R.H. Cellular mechanisms of muscle fatigue. Physiol. Rev. 74: 49–94, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Gibala, M.J., M.A. Tranapolski, and T.E. Graham. Tricarboxylic acid cycle intermediates in human muscle at rest and during prolonged cycling. Am. J. Physiol. 272: E239–E244, 1997.

    PubMed  CAS  Google Scholar 

  17. Graham, T.E., L.P. Turcotte, B. Kiens, and E.A. Richter. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise. J. Appl. Physiol. 78: 725–735, 1995.

    PubMed  CAS  Google Scholar 

  18. Krebs, H.A. The role of chemical equilibria in organ function. Adv. Enzyme Regul. 15: 449–472, 1975.

    Google Scholar 

  19. Lacey, J.M., and D.W. Wilmore. Is glutamine a conditionally essential amino acid? Nutr. Rev. 48: 297–309, 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, S.-H.C., and E.J. Davis. Amino acid catabolism by perfused rat hindquarter. The metabolic fates of valine. Biochem. J. 233: 621–630, 1986.

    PubMed  CAS  Google Scholar 

  21. Marliss, E.B., T.T. Aoki, T. Pozefsky, A.S. Most, and G.F. Cahili. Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. J. Clin. Invest. 50: 814–817, 1971.

    Article  PubMed  CAS  Google Scholar 

  22. Nurjhan, N., A. Bucci, G. Perriello, N. Stumvoll, G. Dailey, D.M. Bier, I. Toft, T.G. Jenssen, and J.E. Gerich. Glutamine: A major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J. Clin. Invest. 95: 272–277, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Pacy, P.J., G.M. Price, D. Halliday, M.R. Quevedo, and D.J. Millward. Nitrogen homeostasis in man: the diurnal responses of protein synthesis and degradation and amino acid oxidation to diets with increasing protein intakes. Clin. Sci. 86: 103–118, 1994.

    PubMed  CAS  Google Scholar 

  24. Rennie, M.J. Influence of exercise on protein and amino acid metabolism. In L.B. Rowell and J.T. Shepherd (eds.) Handbook of Physiology section 12, Exercise: Regulation and Integration of Multiple Systems. Oxford, UK: Oxford University Press, 1996, pp 995–1035.

    Google Scholar 

  25. Sahlin, K., L. Jorfeldt, K.G. Henriksson, S.R. Lewis, and R.G. Haller. Tricarboxylic acid cycle intermediates during incremental exercise in healthy subjects and in patients with McArdle’s disease. Clin. Sci. 88: 687–693, 1995.

    PubMed  CAS  Google Scholar 

  26. Sahlin, K., A. Katz, and S. Broberg. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 259: C834–C841, 1990.

    PubMed  CAS  Google Scholar 

  27. Van Hall, G. Amino acids, ammonia and exercise in man. Thesis, Maastricht University, The Netherlands, 1996.

    Google Scholar 

  28. Van Hall, G., D.A. MacLean, B. Saltin, and A.J.M. Wagenmakers. Mechanisms of activation of muscle branched-chain α-keto acid dehydrogenase during exercise in man. J. Physiol. 494: 899–905, 1996.

    PubMed  Google Scholar 

  29. Van Hall, G., B. Saltin, G.J. van der Vusse, K. Söderlund, and A.J.M. Wagenmakers. Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J. Physiol. 489: 251–261, 1995.

    PubMed  Google Scholar 

  30. Wagenmakers, A.J.M. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. J.O. Holloszy (ed.) Exercise and Sports Science Reviews, Volume 26. Baltimore: Williams and Wilkins, 1998, In press.

    Google Scholar 

  31. Wagenmakers, A.J.M., E.J. Beckers, F. Brouns, H. Kuipers, P.B. Soeters, G.J. van der Vusse, and W.H.M. Saris, W.H.M. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am. J. Physiol. 260: E883–E890, 1991.

    PubMed  CAS  Google Scholar 

  32. Wagenmakers, A.J.M., J.H. Brookes, J.H. Coakley, T. Reilly, and R.H.T. Edwards. Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur. J. Appl. Physiol. Occup. Physiol. 59: 159–167, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Wagenmakers, A.J.M., J.H. Coakley, and R.H.T. Edwards. Metabolism of branched-chain amino acids and ammonia during exercise: Clues from McArdle’s disease. Int. J. Sports Med. 11: S101–S113, 1990.

    Article  PubMed  Google Scholar 

  34. Wagenmakers, A.J.M., D.L.E. Pannemans, A.E. Jeukendrup, A.R Gijsen, J.M.G. Senden, D. Halliday, and W.H.M. Saris. Effects of prolonged exercise on protein metabolism in trained men ingesting carbohydrates. Clin. Nutr. 16 (Supplement 2): 25, 1997.

    Article  Google Scholar 

  35. Wagenmakers, A.J.M., H.J.M. Salden, and J.H. Veerkamp. The metabolic fate of branched-chain amino acids and 2-oxo acids in rat muscle homogenates and diaphragms. Int. J. Biochem. 17: 957–965, 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Wagenmakers, A.J.M., G. Van Hall, and B. Saltin. Excessive muscle proteolysis during one leg exercise is exclusively attended by increased de novo synthesis of glutamine, not of alanine. Clin. Nutr. 15, Suppl: 1, 1996.

    Google Scholar 

  37. Wagenmakers, A.J.M., G. Van Hall, and B. Saltin. High conversion rates of glutamate and branched-chain amino acids to glutamine during prolonged one leg exercise. An alternative mechanism for synthesis of tricarboxylic acid cycle intermediates. The Physiologist 39: A73, 1996.

    Google Scholar 

  38. Watt, P.W., M.E. Corbett, and M.J. Rennie. Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability. Am. J. Physiol. 263: 453–460, 1992.

    Google Scholar 

  39. Wolfe, R.R., Goodenough, R.D., Wolfe, M.H., Royle, G.T. & Nadel, E.R. Isotopic analysis of leucine and urea metabolism in exercising humans. J. Appl. Physiol. 52: 458–466, 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagenmakers, A.J.M. (1998). Protein and Amino Acid Metabolism in Human Muscle. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics