Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Older studies in humans seem to suggest a correlation between plasma long chain fatty acid (LCFA) turnover and oxidation on the one hand and plasma LCFA concentration on the other hand during submaximal exercise. However, recent studies in man, in which higher concentrations of plasma LCFA have been reached during prolonged submaximal exercise, have revealed a levelling off in net uptake in spite of increasing plasma LCFA concentrations. Furthermore, this relationship between plasma LCFA concentration and plasma LCFA uptake and oxidation was altered by endurance training such that levelling off was not apparent in the trained state. These recent findings in man give support to the notion from other cell types that transport of fatty acids from the vascular compartment to the cytosolic space in the muscle cell is not only due to simple diffusion, but is predominantly carrier-mediated. During prolonged submaximal knee-extension exercise it has been demonstrated that the total oxidation of LCFA was approximately 60% higher in trained compared to nontrained subjects. The training-induced adaptations responsible for this increased utilization of plasma fatty acids by the muscle could be located at several steps from the mobilization of fatty acids to skeletal muscle metabolism in the mitochondria. To what extent triacylglycerol located in the muscle cell contribute to the overall lipid utilisation during exercise is still not clear. However, due to underestimation of the contribution of plasma LCFA and fatty acids liberated from the circulating VLDL-triacyl-glycerols to the overall fatty acid oxidation during exercise there is increasing understanding that muscle triacylglycerol contributes to a lesser extent as fuel during exercise in man than mostly stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumrad, N. A., M. R. El-Maghrabi, E. Z. Amri, E. Lopez, and P. A. Grimaldi. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. J. Biol. Chem. 268: 17665–17668, 1993.

    PubMed  CAS  Google Scholar 

  2. Abumrad, N. A., R. C. Perkins, J. H. Park, and C. R. Park. Mechanism of long chain fatty acid permeation in the isolated adipocytes. J. Biol. Chem. 256: 9183–9191, 1981.

    PubMed  CAS  Google Scholar 

  3. Armstrong, D. T., R. Steele, N. Altzuler, A. Dunn, J. S. Bishop, and R. C. De Bodo. Regulation of plasma free fatty acid turnover. Am. J. Physiol. 201: 9–15, 1961.

    PubMed  CAS  Google Scholar 

  4. Berk, P. D., S.-L. Zhou, C. Kiang, D. Stump, M. Bradbury, and L. M. Isola. Uptake of long chain fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J. Biol. Chem. 272: 8830–8835, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Bonen, A., D. J. Dyck, and J. J. F. P. Luiken. Skeletal muscle fatty acid transport and transporters. In: Skeletal Muscle Metabolism in Exercise and Diabetes, edited by E. A. Richter, B. Kiens, H. Galbo, and B. Saltin. New York: Plenum Press, 1998, pp. 193–206.

    Google Scholar 

  6. Cleroux, J., P. van Nguyen, A. Taylor, and F. H. Leenen. Effects of β1-vs.β1+β2-blockade on exercise endurance and muscle metabolism in humans. J. Appl. Physiol. 66: 548–554, 1989.

    PubMed  CAS  Google Scholar 

  7. Essén, B. Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. Acta. Physiol. Scand. Suppl. 454: 1978.

    Google Scholar 

  8. Froberg, S. O. and F. Mossfeldt. Effect of prolonged strenuous exercise on the concentration of triglycerides, phospholipids and glycogen in muscle of man. Acta Physiol. Scand. 82: 167–171, 1971.

    Article  PubMed  CAS  Google Scholar 

  9. Gollnick, P. D. and B. Saltin. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin. Physiol. 2: 1–12, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Hagenfeldt, L. and J. Wahren. Human forearm muscle metabolism during exercise II. Uptake, release and oxidation of individual FFA and glycerol. Scand. J. clin. Lab. Invest. 21: 263–276, 1968.

    Article  PubMed  CAS  Google Scholar 

  11. Havel, R. J., A. Naimark, and C. F. Borchgrevink. Turnover rate and oxidation of free fatty acids of blodd plasma in man during exercise: studies during continous infusion of palmitate-1-C14. J. Clin. Invest. 42: 1054–1063, 1963.

    Article  PubMed  CAS  Google Scholar 

  12. Hurley, B. F., P. M. Nemeth, W. H. Martin III, J. M. Hagberg, G. P. Dalsky, and J. O. Holloszy. Muscle triglyceride utilization during exercise: effect of training. J. Appl. Physiol. 60: 562–567, 1986.

    PubMed  CAS  Google Scholar 

  13. Jansson, E. and L. Kaijser. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J. Appl. Physiol. 62: 999–1005, 1987.

    PubMed  CAS  Google Scholar 

  14. Kiens, B. Effect of endurance training on fatty acid metabolism:local adaptations. Med. Sci. Sports Exerc. 29: 640–645, 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Kiens, B., B. Essen-Gustavsson, N. J. Christensen, and B. Saltin. Skeletal muscle substrate utilization during submaximal exercise in man: Effect of endurance training. J. Physiol. (Lond.) 469: 459–478, 1993.

    CAS  Google Scholar 

  16. Kiens, B., S. Kristiansen, E. A. Richter, and L. P. Turcotte. Membrane associated FABP in human skeletal muscle is increased by endurance training. Biochem. Biophys. Res. Com. 231: 463–465, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Kiens, B. and H. Lithell. Lipoprotein metabolism influenced by training-induced changes in human skeletal muscle. J. Clin. Invest. 83: 558–564, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Kiens, B. and E. A. Richter. Utilization of skeletal muscle triacylglycerol during post-exercise recovery in man. Am. J. Physiol. 275 (Endocrinol. Metab. 38), 1998.

    Google Scholar 

  19. Martin, W. H., 3d, G. P. Dalsky, B. F. Hurley, D. E. Matthews, D. M. Bier, J. M. Hagberg, M. A. Rogers, D. S. King, and J. O. Holloszy. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am. J. Physiol. 265: E708–14, 1993.

    PubMed  CAS  Google Scholar 

  20. Olsson, A. G., B. Eklund, L. Kaijser, and L. A. Carlson. Extraction of endogenous plasma triglycerides by the working human forearm muscle in the fasting state. Scand. J. clin. Lab. Invest 35: 231–236, 1975.

    Article  PubMed  CAS  Google Scholar 

  21. Paul, P. FFA metabolism of normal dogs during steady-state exercise at different work loads. J. Appl. Physiol. 28: 127–132, 1970.

    PubMed  CAS  Google Scholar 

  22. Phillips, S. M., H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, and S. M. Grant. Progressive effect of endurance training on metabolic adaptions in working skeletal muscle. Am. J. Physiol. 33: E265–E272, 1996.

    Google Scholar 

  23. Potter, B., D. Sorrentino, and P. Berk. Mechanisms of cellular uptake of free fatty acids. Anna. Rev. Nutr. 9: 253–270, 1989.

    Article  CAS  Google Scholar 

  24. Romijn, J. A., E. F. Coyle, L. S. Sidossis, A. Gastaldelli, J. F. Horowitz, E. Endert, and R. R. Wolfe. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 265: E380–E391, 1993.

    PubMed  CAS  Google Scholar 

  25. Schaffer, J. E. and H. F. Lodish. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Schwieterman, W., D. Sorrentino, B. Potter, J. Rand, and C. Kiang. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut. Proc. Natl. Acad. Sci., USA 85: 359–363, 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Sidossis, L. S., A. R. Coggan, A. Gastaldelli, and R. R. Wolfe. Pathway of free fatty acid oxidation in human subjects. J. Clin. Invest. 95: 278–284, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Sorrentino, D., R. Robinson, C. Kiang, and P. Berk. At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. J. Clin. Invest. 84: 1325–1333, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Sorrentino, D., D. Stump, B. Potter, R. Robinson, and R. White. Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similart to that in liver, adipose tissue and gut. J. Clin. Invest. 82: 928–935, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Starling, R. D., T. A. Trappe, A. C. Parcell, C. G. Kerr, W. J. Fink, and D. L. Costili. Effects of diet on muscle triglyceride and endurance performance. J. Appl. Physiol. 82: 1185–1189, 1997.

    PubMed  CAS  Google Scholar 

  31. Stump, D. D., R. M. Nunes, D. Sorrentino, L. M. Isola, and P. D. Berk. Characteristics of oleate binding to liver plasma membranes and its uptake by isolated hepatocytes. J. Hepatol. 16: 304–315, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Turcotte, L. P., E. A. Richter, and B. Kiens. Increased plasma FFA uptakeand oxidation during prolonged exercise in trained vs. untrained humans. Am. J. Physiol. 262: E791–E799, 1992.

    PubMed  CAS  Google Scholar 

  33. Van der Vusse, G. J., J. F. Glatz, F. A. Van Nieuwenhoven, R. S. Reneman, and J. B. Bassingthwaighte. Transport of long-chain fatty acids across the muscular endothelium. In: Muscle Metabolism in Exercise and Diabetes, edited by E. A. Richter, B. Kiens, H. Galbo, and B. Saltin. New York: Plenum Press, 1998, pp. 181–192.

    Google Scholar 

  34. Van der Vusse, G. J. and R. S. Renneman. Lipid metabolism in muscle. In: Handbook of Physiology. Section 12: Exercise: Regulation and Integration of Multiple Systems, edited by L. B. Rowell and J. T. Shepherd. American Physiological Society, 1996, p. 952-994.

    Google Scholar 

  35. Wendling, P. S., S. J. Peters, G. J. Heigenhauser, and L. L. Spriet. Variability of triacylglycerol content in human skeletal muscle biopsy samples. J. Appl. Physiol. 81: 1150–1155, 1996.

    PubMed  CAS  Google Scholar 

  36. Zhou, S.-L., D. Stump, L. Isola, and P. D. Berk. Constitutive expression of a saturable transport system for non-esterified fatty acids in Xenopus laevis oocytes. Biochem. J. 297: 315–319, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiens, B. (1998). Training and Fatty Acid Metabolism. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics