Skip to main content

Anatomy of Glucose Transporters in Skeletal Muscle

Effects of Insulin and Contractions

  • Chapter
Skeletal Muscle Metabolism in Exercise and Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Maintaining blood glucose concentration within strict limits is of fundamental importance for preventing the development of various pathophysiological complications as seen in e. g. diabetes mellitus. In this context, skeletal muscle plays a major role. In the postprandial phase it serves as the primary site for disposal of glucose, which is mainly stored as glycogen. Thus approximately half the amount of carbohydrate ingested during a meal is taken up by skeletal muscle (15, 35). In addition it uses glucose for its own metabolic needs, which can increase dramatically during exercise (33). Major determinants of skeletal muscle glucose uptake include glucose supply (arterial concentration × blood flow), glucose transport capacity of the muscle fiber surface membrane, and intracellular metabolism. In this essay we will focus on the expression and localization of glucose transporter proteins in skeletal muscle, which in turn determines the glucose transport capacity of the muscle fiber surface membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, G. I., C. F. Burant, J. Takeda, and G. W. Gould. Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268: 19161–19164, 1993.

    PubMed  CAS  Google Scholar 

  2. Brozinick, J. T., Jr., G. J. Etgen, Jr., B. B. Yaspelkis, III., and J. L. Ivy. Contraction-activated glucose uptake is normal in insulin-resistant muscle of the obese Zucker rat. J. Appl. Physiol. 73: 382–387, 1992.

    PubMed  CAS  Google Scholar 

  3. Coderre, L., K. V. Kandror, G. Vallega, and P. F. Pilch. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J. Biol. Chem. 270: 27584–27588, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Colberg, S. R., J. M. Hagberg, S. D. McCole, J. M. Zmuda, P. D. Thompson, and D. E. Kelley. Utilization of glycogen but not plasma glucose is reduced in individuals with NIDDM during mild-intensity exercise. J. Appl. Physiol. 81: 2027–2033, 1996.

    PubMed  CAS  Google Scholar 

  5. Cushman, S. W., and L. J. Wardzala. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J. Biol. Chem. 255: 4758–4762, 1980.

    PubMed  CAS  Google Scholar 

  6. Czech, M. P., A. Chawla, C. W. Woon, J. Buxton, and M. Armoni. Exofacial epitope-tagged glucose transporter chimeras reveal COOH-terminal sequences governing cellular localization. J. Cell. Biol. 123: 127–135, 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Douen, A. G., T. Ramlal, S. Rastogi, P. J. Bilan, G. D. Cartee, M. Vranic, J. O. Holloszy, and A. Klip. Exercise induces recruitment of the “insulin-responsive glucose transporter”. Evidence for distinct intracellular insulin-and exercise-recruitable transporter pools in skeletal muscle. J. Biol. Chem. 265: 13427–13430, 1990.

    PubMed  CAS  Google Scholar 

  8. Froehner, S. C., A. Davies, S. A. Baldwin, and G. E. Lienhard. The blood-nerve barrier is rich in glucose transporter. J. Neurocytol. 17: 173–178, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Guillet-Deniau, I., A. Leturque, and J. Girard. Expression and cellular localization of glucose transporters (GLUTI, GLUT3, GLUT4) during differentiationof myogenic cells isolated from rat foetuses. J. Cell. Sci. 107: 487–496, 1994.

    PubMed  CAS  Google Scholar 

  10. Han, X., T. Ploug, and H. Galbo. Effect of diet on insulin-and contraction-mediated glucose transport and uptake in rat muscle. Am. J. Physiol. 269: R544–R551, 1995.

    PubMed  CAS  Google Scholar 

  11. Handberg, A., L. Kayser, P. E. Høyer, and J. Vinten. A substantial part of GLUT-1 in crude membranes from muscle originates from perineurial sheaths. Am. J. Physiol. 262: E721–E727, 1992.

    PubMed  CAS  Google Scholar 

  12. Harik, S. I., R. N. Kalaria, L. Anderson, P. Lundahl, and G. Perry. Immunocytochemical localization of the erythroid glucose transporter: abundance in tissues with barrier functions. J. Neurosci. 10: 3862–3872, 1990.

    PubMed  CAS  Google Scholar 

  13. James, D. E., and R. C. Piper. Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J. Cell. Biol. 126: 1123–1126, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Kandror, K. V., and P. Pilch. Compartmentalization of protein traffic in insulin-sensitive cells. Am. J. Physiol. 271: E1–E14, 1996.

    PubMed  CAS  Google Scholar 

  15. Katz, L. D., M. G. Glickman, S. Rapoport, E. Ferrannini, and R. A. DeFronzo. Splanchnic and peripheral disposal of oral glucose in man. Diabetes 32: 675–679, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Kusunoki, M., L. H. Storlien, J. MacDessi, N. D. Oakes, C. Kennedy, D. J. Chisholm, and E. W. Kraegen. Muscle glucose uptake during and after exercise is normal in insulin-resistant rats. Am. J. Physiol. 264: E167–E172, 1993.

    PubMed  CAS  Google Scholar 

  17. Lee, A. D., P. A. Hansen, and J. O. Holloszy. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 361: 51–54, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Livingstone, C., D. E. James, J. E. Rice, D. Hanpeter, and G. W. Gould. Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes. Biochem. J. 315: 487–495, 1996.

    PubMed  CAS  Google Scholar 

  19. Lund, S., G. D. Holman, O. Schmitz, and O. Pedersen. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc. Natl. Acad. Sci. USA 92: 5817–5821, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Luzio, J. P., B. Brake, G. Banting, K. E. Howell, P. Braghetta, and K. K. Stanley. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network. Biochem. J. 270: 97–102, 1990.

    PubMed  CAS  Google Scholar 

  21. Malide, D., and S. W. Cushman. Morphological effects of wortmannin on the endosomal system and GLUT4-containing compartments in rat adipose cells. J. Cell. Sci. 110: 2795–2806, 1997.

    PubMed  CAS  Google Scholar 

  22. Marette, A., J. M. Richardson, T. Ramlal, T. W. Balon, M. Vranic, J. E. Pessin, and A. Klip. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am. J. Physiol. 262: C443–C452, 1992.

    Google Scholar 

  23. Martin, I. K., A. Katz, and J. Wahren. Splanchnic and muscle metabolism during exercise in NIDDM patients. Am. J. Physiol. 269: E583–E590, 1995.

    PubMed  CAS  Google Scholar 

  24. Nesher, R., I. E. Karl, and D. M. Kipnis. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am. J. Physiol. 249: C233–C237, 1985.

    Google Scholar 

  25. Piper, R. C., C. Tai, P. Kulesza, S. Pang, D. Warnock, J. Baenziger, J. W. Slot, H. J. Geuze, C. Puri, and D. E. James. GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration. J. Cell Biol. 121: 1221–1232, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Ploug, T., H. Galbo, J. Vinten, M. Jørgensen, and E. A. Richter. Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am. J. Physiol. 253: E12–E20, 1987.

    PubMed  CAS  Google Scholar 

  27. Ploug, T., T. Ohkuwa, A. Handberg, J. Vissing, and H. Galbo. Effect of immobilization on glucose transport and glucose transporter expression in rat skeletal muscle. Am. J. Physiol. 268: E980–E986, 1995.

    PubMed  CAS  Google Scholar 

  28. Rahkila, P., A. Alakangas, K. Väänänen, and K. Metsikkö. Transport pathway, maturation, and targetting of the vesicular stomatitis virus glycoprotein in skeletal muscle fibers. J. Cell. Sci. 109: 1585–1596, 1996.

    PubMed  CAS  Google Scholar 

  29. Rahkila, P., K. Vaananen, J. Saraste, and K. Metsikko. Endoplasmic reticulum to Golgi trafficking in multinucleated skeletal muscle fibers. Exp. Cell. Res. 234: 452–464, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Ralston, E. Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis. J. Cell. Biol. 120: 399–409, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Ralston, E., and T. Ploug. GLUT4 in cultured skeletal myotubes is segregated from the transferrin receptor and stored in vesicles associated with the TGN. J. Cell. Sci. 109: 2967–2978, 1996.

    PubMed  CAS  Google Scholar 

  32. Ralston, E., and T. Ploug. Pre-embedding staining of single muscle fibers for light and electron microscopy studies of subcellular organization. Scanning Microscopy Supplement 10: In press, 1996.

    Google Scholar 

  33. Richter, E. A. Glucose utilization. In: Handbook of Physiology. Section 12: Exercise: Regulation and Integration of Multiple Systems, edited by L. B. Rowell and J. T. Shepherd, Oxford University Press, 1996, p. 912-951.

    Google Scholar 

  34. Santalucia, T., M. Camps, A. Castello, P. Munoz, A. Nuel, X. Testar, M. Palacin, and A. Zorzano. Developmental regulation of GLUT-1 (erythroid/hepG2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130: 837–846, 1992.

    Article  PubMed  CAS  Google Scholar 

  35. Shulman, G. I., D. L. Rothman, T. Jue, P. Stein, R. A. DeFronzo, and R. G. Shulman. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent-diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 322: 223–228, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Slot, J. W., H. J. Geuze, S. Gigengack, D. E. James, and G. E. Lienhard. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc. Natl. Acad. Sci. U.S.A. 88: 7815–7819, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Slot, J. W., H. J. Geuze, S. Gigengack, G. E. Lienhard, and D. E. James. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113: 123–135, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Smith, R. M., M. J. Charron, N. Shah, H. F. Lodish, and L. Jarett. Immunoelectron microscopic demonstration of insulin-stimulated translocation of glucose transporters to the plasma membrane of isolated rat adipocytes and masking of the carboxyl-terminal epitope of intracellular GLUT4. Proc. Natl. Acad. Sci. U.S.A. 88: 6893–6897, 1991.

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki, K., and T. Kono. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. U.S.A. 77: 2542–2545, 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, W., P. A. Hansen, B. A. Marshall, J. O. Holloszy, and M. Mueckler. Insulin unmasks a COOH-terminal GLUT4 epitope and increases glucose transport across T-tubules in skeletal muscle. J. Cell. Biol. 135: 415–430, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Yeh, J., E. A. Gulve, L. Rameh, and M. J. Birnbaum. The effects of Wortmannin on rat skeletal muscle. J. Biol. Chem. 270: 2107–2111, 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ploug, T., Ralston, E. (1998). Anatomy of Glucose Transporters in Skeletal Muscle. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics