Skip to main content

Intracellular Transport of Fatty Acids in Muscle

Role of Cytoplasmic Fatty Acid-Binding Protein

  • Chapter
Skeletal Muscle Metabolism in Exercise and Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Long-chain fatty acids represent a major substrate for energy production in striated muscles, especially in those muscles which have a high oxidative enzymatic capacity. Following their uptake from the extracellular compartment the fatty acids have to translocate through the aqueous cytoplasm of the myocytes to reach the mitochondria where they undergo oxidative degradation. This intracellular transport is assisted by cytoplasmic fatty acid-binding protein (FABPc), a small (15 kD) protein which shows a high affinity for the non-covalent binding of long-chain fatty acids, and of which several types occur. So-called heart-type or muscle-type FABPc is found in muscle cells, and is abundant especially in oxidative fibers. The muscular FABPc content appears to relate to the rate of fatty acid utilization, and also changes in concert to modulations in fatty acid utilization induced by (patho)physiological stimuli (e. g. endurance training, diabetes). The facilitation of intracellular fatty acid transport by FABPc is accomplished by increasing the concentration of the diffusing fatty acids in the aqueous cytoplasm and, most likely, also by interacting directly with membranes to promote transfer of fatty acids to and from the cytosolic binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumrad, N.A., M.R. El-Maghrabi, E.-Z. Amri, E. Lopez, and P.A. Grimaldi. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. J. Biol. Chem. 268: 17665–17668, 1993.

    PubMed  CAS  Google Scholar 

  2. Banaszak, L., N. Winter, Z. X, D.A. Bernlohr, S. Cowan, and T.A. Jones. Lipid binding proteins: a family of fatty acid and retinoid transport proteins. Adv. Protein Chem. 45: 89–151, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Bonen, A., D.J. Dyck, J.J.F.P. Luiken. Skeletal muscle fatty acid transport and transporters. In: Skeletal muscle metabolism in exercise and diabetes. Plenum Publ. Co., edited by E.A. Richter, B. Kiens, H. Galbo, and B. Saltin, 1998, p. 193-205.

    Google Scholar 

  4. Börchers, T., and F. Spener. Fatty acid binding proteins. Curr. Topics Membr. 40: 261–294, 1994.

    Article  Google Scholar 

  5. Calles-Escandón, J., L. Sweet, O. Ljungqvist, and M.F. Hirshman. The membrane-associated 40 kD fatty acid binding protein (Berk’s protein), a putative fatty acid transporter, is present in human skeletal muscle. Life Sci. 58: 19–28, 1996.

    Article  PubMed  Google Scholar 

  6. Carey, J.O., P.D. Neufer, R.P. Farrar, J.H. Veerkamp, and G.L. Dohmn. Transcriptional regulation of muscle fatty acid-binding protein. Biochem. J. 298: 613–617, 1994.

    PubMed  CAS  Google Scholar 

  7. DeGrella, R.F., and R.J. Light. Uptakeand metabolism of fatty acids by dispersed adult rat heart myocytes. I. Kinetics of homologous fatty acids. J. Biol. Chem. 255: 9731–9738, 1980.

    PubMed  CAS  Google Scholar 

  8. Dyck, D.J., S.J. Peters, J. Glatz, J. Górski, H. Keizer, B. Kiens, S. Liu, E.A. Richter, L.L. Spriet, G.J. Van der Vusse, and A. Bonen. Functional differences in lipid metabolism in resting skeletal muscle of various fiber types. Am. J. Physiol. 272: E340–E351, 1997.

    PubMed  CAS  Google Scholar 

  9. Faergeman, N.J., and J. Knudsen. Role of long-chain acyl-CoA esters in the regulation of metabolism and cell signalling. Biochem. J. 323: 1–12, 1997.

    PubMed  CAS  Google Scholar 

  10. Gamier, A., C. Poizat, C. Keriel, P. Cuchet, M.M. Vork, Y.F. De Jong, and J.F.C. Glatz. Modulation of fatty acid-binding protein content of adult rat heart in response to chronic changes in plasma lipid levels. Mol. Cell. Biochem. 123: 107–112, 1993.

    Article  Google Scholar 

  11. Glatz, J.F.C., M.M. Vork, and G.J. Van der Vusse. Significance of cytoplasmic fatty acid-binding protein for the ischemic heart. Mol. Cell. Biochem. 123: 167–173, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Glatz, J.F.C., E. Van Breda, H.A. Keizer, Y.F. De Jong, J.R.T. Lakey, R.V. Rajotte, A. Thompson, G.J. Van der Vusse, and G.D. Lopaschuk. Rat heart fatty acid-binding protein content is increased in experimental diabetes. Biochem. Biophys. Res. Commun. 199: 639–646, 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Glatz JFC, Börchers T, Spener F, Van der Vusse G J. Fatty acids in cell signalling. Modulation by lipid binding proteins. Prostagl. Leukotr. Essential Fatty Acids 52: 121–127, 1995.

    Article  CAS  Google Scholar 

  14. Glatz, J.F.C., and G.J. Van der Vusse. Cellular fatty acid-binding proteins. Their function and physiological significance. Prog. Lipid Res. 35: 243–282, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Glatz, J.F.C., J.J.F.P. Luiken, F.A. Van Nieuwenhoven, and G.J. Van der Vusse. Molecular mechanism of cellular uptake and intracelular translocation of fatty acids. Prostagl. Leukotr. Essential Fatty Acids 57: 3–9, 1997.

    Article  CAS  Google Scholar 

  16. Haunerland, N.H., and J.M. Chisholm. Fatty acid-binding protein in flight muscle of the locust, Schistocerca gregaria. Biochim. Biophys. Acta 1047: 233–238, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Helge, J.W., B. Kiens. Muscle enzyme activity in humans: Role of substrate availability and training. Am. J. Physiol. 272: R1620–R1624, 1997.

    PubMed  CAS  Google Scholar 

  18. Herr F.M., J. Aronson, and J. Storch. Role of portal lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry 35: 1296–1303, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Hollmäng, A., J. Svedberg, E. Jennische, and P. Björntorp. Effect of testosterone on muscle insulin sensitivity and morphology in female rats. Am. J. Physiol. 259: E555–E560, 1990.

    Google Scholar 

  20. Hotamisligil, G.S., R.S. Johnson, R.J. Distel, R. Ellis, V.E. Papaioannou, and B.M. Spiegelman. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274: 1377–1379, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Kiens, B., S. Kristiansen, E.A. Richter, and L.P. Turcotte. Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem. Biophys. Res. Commun. 231: 463–465, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, H.K., and J. Storch. Regulation of fluorescent fatty acid transfer from adipocyte and heart fatty acid-binding proteins by acceptor membrane lipid composition and structure. J. Biol. Chem. 267: 10056–20051, 1992.

    Google Scholar 

  23. Kragten, J.A., F.A. Van Nieuwenhoven, M.P. Van Dieijen-Visser, P.H.M.H. Theunissen, W.T. Hermens, J.F.C. Glatz. Distribution of myoglobin and fatty acid-binding protein in human cardiac autopsies. Clin. Chem. 42: 337–338, 1996.

    PubMed  CAS  Google Scholar 

  24. Miller, W.C., G.R. Bryce, R.K. Conlee. Adaptations to a high-fat diet that increases exercise endurance in male rats. J. Appl. Physiol. 56: 78–83, 1984.

    PubMed  CAS  Google Scholar 

  25. Nielsen, S.U., and F. Spener. Fatty acid-binding protein from rat heart is phosphorylated on Tyr19 in response to insulin stimulation. J Lipid Res. 34: 1355–1366, 1993.

    PubMed  CAS  Google Scholar 

  26. Ockner, R.K. Historic overview of studies on fatty acid-binding proteins. Mol. Cell. Biochem. 98: 3–9, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Prinsen, C.F.M., P.J.L. Werten, J.A. Maassen, and J.H. Veerkamp. No significant tyrosine phosphorylation of muscle fatty acid-binding protein. Biochim. Biophys. Acta 1215: 103–108, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Popov, D., M. Hasu, N. Ghinea, N. Simionescu, and M. Simionescu. Cardiomyocytes express albumin binding proteins. J. Mol. Cell. Cardiol. 24: 989–1002, 1992

    Article  PubMed  CAS  Google Scholar 

  29. Richieri, G.V., R.T. Ogata, and A.M. Kleinfeld. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269: 23918–23930, 1994.

    PubMed  CAS  Google Scholar 

  30. Schaap, F.G., B. Specht, G.J. Van der Vusse, T. Börchers, and J.F.C. Glatz. One-step purification of rat heart-type fatty acid-binding protein expressed in Escherichia coli. J. Chromatogr. B 679: 61–67, 1996.

    Article  CAS  Google Scholar 

  31. Schaffer, J.E., and H.F. Lodish. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Schnitzer, J.E., A. Sung, R. Horvat, J. Bravo. Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationlly modified albumins. J. Biol. Chem. 267: 24544–24553, 1992.

    PubMed  CAS  Google Scholar 

  33. Spitsberg, V.L., E. Matitashvili, and R.C. Gorewit. Association and co-expression of fatty acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur. J. Biochem. 230: 872–878, 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Stremmel W. Fatty acid uptake by isolated rat heart myocytes represents a carrier mediated transport process. J. Clin. Invest. 81: 844–852, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Tipping, E., and B. Ketterer. The influence of soluble binding proteins on lipohile transport and metabolism in hepatocytes. Biochem. J. 195: 441–452, 1981.

    PubMed  CAS  Google Scholar 

  36. Van Bilsen, M., J.E. De Vries, and G.J. Van der Vusse. Long-term effects of fatty acids on cell viability and gene expression of neonatal cardiac myocytes. Prostagl. Leukotr. Essential Fatty Acids 57: 39–45, 1997.

    Article  Google Scholar 

  37. Van Breda, E., H.A. Keizer, M.M. Vork, D.A.M. Surtel, Y.F. De Jong, G.J. Van der Vusse, and J.F.C. Glatz. Modulation of fatty acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Eur. J. Physiol. 421: 274–279, 1992.

    Article  Google Scholar 

  38. Van Breda, E. The effect of testosterone on skeletal muscle energy metabolism in diabetic and non-diabetic endurance trained rats. PhD Thesis. Maastricht University, Maastricht, the Netherlands, 1993, pp. 105-122.

    Google Scholar 

  39. Van Breda, E., P. Geurten, P.H.H. Bomans, P.M. Frederik, H.A. Keizer, G.J. Van der Vusse, J.F.C. Glatz. Localization of fatty acid-binding protein (FABP) in rat heart and skeletal muscle. Eur. J. Physiol. 424: R3, 1993.

    Article  Google Scholar 

  40. Van der Horst, D.J., J.M. Van Doom, P.C.C.M. Passier, M.M. Vork, and J.F.C. Glatz. Role of fatty acid-binding protein in lipid metabolism of insect flight muscle. Mol. Cell. Biochem. 123: 145–152, 1993.

    Article  PubMed  Google Scholar 

  41. Van der Vusse, G.J., T.H.M. Roemen, F.W. Prinzen, W.A. Coumans, and R.S. Reneman. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ. Res. 50: 538–546, 1982.

    Article  PubMed  Google Scholar 

  42. Van der Vusse, G.J., J.F.C. Glatz, H.C.G. Stam, and R.S. Reneman. Fatty acid homeostasis in the normoxic and ischemie heart. Physiol. Rev. 72: 881–940, 1992.

    PubMed  Google Scholar 

  43. Van der Vusse, G.J., and T.H.M. Roemen. Gradient of fatty acids from blood plasma to skeletal muscle in dogs. J. Appl. Physiol. 78: 1839–1843, 1995.

    PubMed  Google Scholar 

  44. Van der Vusse, G.J., and R.S. Reneman. Lipid metabolism in muscle. In: Handbook of Physiology. Integration of motor, circulatory, respiratory, and metabolic control during exercise. Am. Physiol. Soc., edited by L.B. Rowell and J.T. Shepherd, 1996, p. 952-994.

    Google Scholar 

  45. Van der Vusse, G.J., J.F.C. Glatz, F.A. Van Nieuwenhoven, R.S. Reneman, and J.B. Bassingthwaighte. Transport of long-chain fatty acids across the muscular endothelium. In: Skeletal muscle metabolism in exercise and diabetes. Plenum Publ. Co., edited by E.A. Richter, B. Kiens, H. Galbo, and B. Saltin, 1998, p. 181-192.

    Google Scholar 

  46. Van Nieuwenhoven, RA., C.P.H.J. Verstijnen, G.J.J.M. Van Eys, E. Van Breda, Y.F. De Jong, G.J. Van der Vusse, and J.F.C. Glatz. Fatty acid transfer across the myocardial capillary wall. No evidence of a substantial role for cytoplasmic fatty acid-binding protein. J. Mol. Cell. Cardiol. 26: 1635–1647, 1994.

    Article  PubMed  Google Scholar 

  47. Van Nieuwenhoven, F.A., C.P.H.J. Verstijnen, N.A. Abumrad, P.H.M. Willemsen, G.J.J.M. Van Eys, G.J. Van der Vusse, and J.F.C. Glatz. Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem. Biophys. Res. Commun. 207: 747–752, 1995.

    Article  PubMed  Google Scholar 

  48. Veerkamp, J.H., H.T.B. Van Moerkerk. Fatty acid-binding protein and its relation to fatty acid oxidation. Mol. Cell. Biochem. 123: 101–1106, 1993.

    Article  PubMed  CAS  Google Scholar 

  49. Vork, M.M., J.F.C. Glatz, D.A.M. Surtel, H.J.M. Knubben, and G.J. Van der Vusse. A sandwich enzyme linked immuno-sorbent assay for the determination of rat heart fatty acid-binding protein using the streptavidin-biotin system. Application to tissue and effluent samples from normoxic rat heart perfusion. Biochim. Biophys. Acta 1075: 199–205, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Vork, M.M., N. Trigault, L.H.E.H. Snoeckx, J.F.C. Glatz, and G.J. Van der Vusse. Heterogeneous distribution of fatty acid-binding protein in the hearts of Wistar-Kyoto and spontaneously hypertensive rats. J. Mol. Cell. Cardiol. 24: 317–321, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Vork, M.M., J.F.C. Glatz, and G.J. Van der Vusse. On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. J. Theor. Biol. 160: 207–222, 1993.

    Article  PubMed  CAS  Google Scholar 

  52. Vork, M.M., J.F.C. Glatz, D.A.M. Surtel, and G.J. Van der Vusse. Release of fatty acid binding protein and lactate dehydrogenase from isolated rat heart during normoxia, low-flow ischemia, and reperfusion. Can. J. Physiol. Pharmacol. 71: 952–958, 1993.

    Article  PubMed  CAS  Google Scholar 

  53. Vork, M.M., J.F.C. Glatz, and G.J. Van der Vusse. Modelling intracellular fatty acid transport: possible mechanistic role of cytoplasmic fatty acid-binding protein. Prostagl. Leukotr. Essential Fatty Acids 57: 11–16, 1997.

    Article  CAS  Google Scholar 

  54. Vorum, H., R. Brodersen, U. Kragh-Hansen, and A.O. Pederson. Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim. Biophys. Acta 1126: 135–142, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Waggoner, D.W., and D.A. Bernlohr. In situ labeling of the adipocyte lipid binding protein with 3-[125I]iodo-4-azido-N-hexadecylsalicylamide. Evidence for a role of fatty acid binding proteins in lipid uptake. J. Biol. Chem. 265: 11417–11420, 1990.

    PubMed  CAS  Google Scholar 

  56. Weisiger, R.A. Cytoplasmic transport of lipids. Role of binding proteins. Comp. Biochem. Physiol. 115B: 319–331, 1996.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Glatz, J.F.C., Van Breda, E., Van der Vusse, G.J. (1998). Intracellular Transport of Fatty Acids in Muscle. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics