Skip to main content

Training Effects on Muscle Glucose Transport during Exercise

  • Chapter
Skeletal Muscle Metabolism in Exercise and Diabetes

Abstract

Muscle glucose uptake is increased during exercise compared to rest. In general, muscle glucose uptake increases with increasing exercise intensity and duration. Whereas the arterio-venous concentration difference only increases 2–4-fold during exercise compared with rest the increase in muscle perfusion is 10–20 times and therefore quantitatively very important. During exercise the surface membrane glucose transport capacity increases in skeletal muscle primarely due to an increase in surface membrane GLUT4 protein content. Endurance training decreases muscle glucose uptake during exercise at a given absolute submaximal work-load despite a large increase in muscle GLUT4 protein content. We have shown that this decrease in glucose uptake at least in part is due to a blunted exercise-induced increase in sarcolemmal glucose transport capacity secondary to a blunted increase in sarcolemmal GLUT4 transporter number. Thus, endurance training leads to a marked reduction of the fraction of muscle GLUT4 that is translocated during a given submaximal exercise bout. Whether this is true also during exercise at higher intensities remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, G. and P. Felig. Lactate and glucose exchange across the forearm, legs and splanchnic bed during and after prolonged leg exercise. J. Clin. Invest. 69: 45–54, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Ahlborg, G., P. Felig, L. Hagenfeldt, R. Hendler, and J. Wahren. Substrate turnover during prolonged exercise in man. Splanchinc and leg metabolism of glucose, free fatty acids and amino acids. J. Clin. Invest. 53: 1080–1090, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Andersen, P. and B. Saltin. Maximal perfusion of skeletal muscle in man. J. Physiol. 366: 233–249, 1985.

    PubMed  CAS  Google Scholar 

  4. Brozinick, J. T. J., G. J. J. Etgen, B. B. Yaspelkis III, and J. L. Ivy. Effects of exercise training on muscle GLUT-4 protein content and translocation in obese Zucker rats. Am. J. Physiol. 265: E419–E427, 1993.

    PubMed  CAS  Google Scholar 

  5. Calles, J., J. Cunningham, L. Nelson, N. Brown, and E. Nadel. Glucose turnover during recovery from intensive exercise. Diabetes 32: 734–738, 1983.

    PubMed  CAS  Google Scholar 

  6. Coggan, A., W. Kohrt, R. Spina, D. Bier, and J. Holloszy. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J. Appl. Physiol. 68: 990–996, 1990.

    PubMed  CAS  Google Scholar 

  7. Coggan, A. R., C. A. Raguso, B. D. Williams, L. S. Sidossis, and A. Gastaldelli. Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. J. Appl. Physiol. 78: 1203–1207, 1995.

    Article  PubMed  CAS  Google Scholar 

  8. Dela, F., A. Handberg, K. J. Mikines, J. Vinten, and H. Galbo. GLUT4 and insulin receptor binding and kinase activity in trained human muscle. J. Physiol. (Lond.) 469: 615–624, 1993.

    CAS  Google Scholar 

  9. Dela, F., K. J. Mikines, M. von Linstow, N. H. Secher, and H. Galbo. Effect of training on insulin-mediated glucose uptake in human muscle. Am. J. Physiol. 263: E1134–E1143, 1992.

    PubMed  CAS  Google Scholar 

  10. Dohm, G. L. and R. W. Dudek. Role of transverse tubules (T-tubules) in muscle glucose transport. In: Skeletal Muscle Metabolism in Exercise and Diabetes. Eds: Richter, E.A., Kiens, B., Galbo, H. and Saltin, B. Plenum Press, pp. 27-34, 1998

    Google Scholar 

  11. Ebeling, P., R. Bourey, L. Koranyi, J. A. Tuominen, L. C. Groop, J. Henriksson, M. Mueckler, A. Sovijärvi, and V. A. Koivisto. Mechanism of enhanced insulin sensitivity in athletes. J. Clin. Invest. 92: 1623–1631, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Friedlander, A. L., G. A. Casazza, M. A. Horning, M. J. Huie, and G. A. Brooks. Training-induced alterations of glucose flux in men. J. Appl. Physiol. 82: 1360–1369, 1997.

    PubMed  CAS  Google Scholar 

  13. Gollnick, P., B. Pernow, B. Essén, E. Jansson, and B. Saltin. Availability of glycogen and plasma ffa for substrate utilization in leg muscle of man during exercise. Clin. Physiol. 1: 27–42, 1981.

    Article  CAS  Google Scholar 

  14. Green, H. J., S. Jones, M. Ball-Burnett, B. Farrance, and D. Ranney. Adaptations in muscle metabolism to prolonged voluntary exercise and training. J. Appl. Physiol 78: 138–145, 1995.

    PubMed  CAS  Google Scholar 

  15. Grubb, B. and J. Snarr. Effect of flow rate and glucose concentration on glucose uptake rate by the rat limb. Proc. Soc. Exp. Biol Med. 154: 33–36, 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Gumà, A., J. R. Zierath, H. Wallberg-Henriksson, and A. Klip. Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. Am. J. Physiol. 268: E613–E622, 1995.

    PubMed  Google Scholar 

  17. Hansen, P. A., E. A. Gulve, B. A. Marshall, J. Gao, J. E. Pessin, J. O. Holloszy, and M. Mueckler. Skeletal muscle glucose transport and metaboism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J Biol. Chem. 270: 1679–1684, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Hargreaves, M., B. Kiens, and E. A. Richter. Effect of increased plasma free fatty acid concentrations on muscle metabolism in exercising men. J. Appl. Physiol. 70: 194–201, 1991.

    PubMed  CAS  Google Scholar 

  19. Hashiramoto, M. and D. E. James. SNAREing GLUT4 at the plasma membrane in muscle and fat. 1998. In: Skeletal Muscle Metabolism in Exercise and Diabetes. Eds: Richter, E.A., Kiens, B., Galbo, H. and Saltin, B. Plenum Press, pp. 47-62, 1998

    Google Scholar 

  20. Henriksen, E. J., R. E. Bourey, K. J. Rodnick, L. Koranyi, M. A. Permuti, and J. O. Holloszy. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am. J. Physiol. 259: E593–E598, 1990.

    PubMed  CAS  Google Scholar 

  21. Henriksson, J. Training induced adaptations of skeletal muscle and metabolism during submaximal exercise. J. Physiol. (Lond.) 270: 661–675, 1977.

    CAS  Google Scholar 

  22. Hespel, P. and E. A. Richter. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J. Physiol. (Lond.) 421: 347–359, 1990.

    Google Scholar 

  23. Hespel, P., L. Vergauwen, K. Vandenberghe, and E. A. Richter. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 44: 210–215, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Jansson, E. and L. Kaijser. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J. Appl. Physiol. 62: 999–1005, 1987.

    PubMed  CAS  Google Scholar 

  25. Jorfeldt, L. and J. Wahren. Human forearm muscle metabolism during exercise. V. Quantitative aspects of glucose uptake and lactate production during exercise. Scan. J. Clin. Lab. Invest. 26: 73–81, 1970.

    Article  CAS  Google Scholar 

  26. Katz, A., S. Broberg, K. Sahlin, and J. Wahren. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251: E65–E70, 1986.

    PubMed  CAS  Google Scholar 

  27. Katz, A., K. Sahlin, and S. Broberg. Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. Am. J. Physiol. 260: E411–E415, 1991.

    PubMed  CAS  Google Scholar 

  28. Kawanaka, K., I. Tabata, and M. Higuchi. More tetanic contractions are required for activating glucose transport maximally in trained muscle. J. Appl. Physiol. 83: 429–433, 1997.

    PubMed  CAS  Google Scholar 

  29. Kiens, B., B. Essen-Gustavsson, N. J. Christensen, and B. Saltin. Skeletal muscle substrate utilization during submaximal exercise in man: Effect of endurance training. J. Physiol. (Lond.) 469: 459–478, 1993.

    CAS  Google Scholar 

  30. Kjær, M., P. Farrell, N. Christensen, and H. Galbo. Increased epinephrine response and inaccurate glucoregulation in exercising athletes. J. Appl. Physiol. 61: 1693–1700, 1986.

    PubMed  Google Scholar 

  31. Kjær, M., B. Kiens, M. Hargreaves, and E. A. Richter. Influence of active muscle mass on glucose homeostasis during exercise in humans. J. Appl. Physiol. 71: 552–557, 1991.

    PubMed  Google Scholar 

  32. Klein, S., E. F. Coyle, and R. R. Wolfe. Fat metabolism during low-intensity exercise in endurance-trained and untrained men. Am. J. Physiol. 267: E934–E940, 1994.

    PubMed  CAS  Google Scholar 

  33. Kristiansen, S., M. Hargreaves, and E. A. Richter. Exercise-induced increase in glucose transport, GLUT4, and VAMP-2 in plasma membrane from human muscle. Am. J. Physiol. 270: E197–E201, 1996.

    PubMed  CAS  Google Scholar 

  34. Kristiansen, S., M. Hargreaves, and E. A. Richter. Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. Am. J. Physiol. 272: E385–E389, 1997.

    PubMed  CAS  Google Scholar 

  35. Lund, S., G. D. Holman, J. R. Zierath, J. Rincon, L. A. Nolte, A. E. Clark, O. Schmitz, O. Pedersen, and H. Wallberg-Henriksson. Effect of insulin on GLUT4 cell surface content and turnover rate in human skeletal muscle as measured by the exofacial bis-mannose photolabeling technique. Diabetes 46: 1965–1969, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Marliss, E. B., E. Simantirakis, P. D. G. Miles, C. Purdon, R. Gougeon, C. J. Field, J. B. Halter, and M. Vranic. Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects. J. Appl. Physiol. 71: 924–933, 1991.

    PubMed  CAS  Google Scholar 

  37. McConnell, G., M. McCoy, J. Proietto, and M. Hargreaves. Skeletal muscle GLUT4 and glucose uptake during exercise in humans. J. Appl. Physiol. 77: 1565–1568, 1994.

    Google Scholar 

  38. Mendenhall, L. A., S. C. Swanson, D. L. Habash, and A. R. Coggan. Ten days of exercise training reduces glucose production and utilization during moderate-intensity exercise. Am. J. Physiol. 266: E136–E143, 1994.

    PubMed  CAS  Google Scholar 

  39. Phillips, S. M., H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, R. E. Hill, and S. M. Grant. Effects of training duration on substrate turnover and oxidation during exercise. J. Appl. Physiol. 81: 2182–2191, 1996.

    PubMed  CAS  Google Scholar 

  40. Ploug, T. and E. Ralston. Anatomy of glucose transporters in skeletal muscle: Effects of insulin and contractions. In: Skeletal Muscle Metabolism in Exercise and Diabetes. Eds: Richter, E.A., Kiens, B., Galbo, H. and Saltin, B. Plenum Press, pp. 17-26, 1998

    Google Scholar 

  41. Ploug, T., B. M. Stallknecht, O. Pedersen, B. B. Kahn, T. Ohkuwa, J. Vinten, and H. Galbo. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am. J. Physiol. 259: E778–E786, 1990.

    PubMed  CAS  Google Scholar 

  42. Reynolds, T. H., J. T. Brozinick, Jr., M. A. Rogers, and S. W. Cushman. Mechanisms of the glucose transport response to hypoxia in isolated rat skeletal muscle: Potential role of glycogen. Am. J. Physiol. 274: E773–E778, 1998.

    PubMed  CAS  Google Scholar 

  43. Richter, E. A. Glucose utilization. In: Handbook of Physiology. Section 12: Exercise: Regulation and integration of multiple systems, edited by L. B. Rowell and J. T. Shepherd. New York: Oxford University Press, 1996, p. 912-951.

    Google Scholar 

  44. Richter, E. A., P. Jensen, B. Kiens, and S. Kristiansen. Sarcolemmal glucose transport and GLUT4 translocation during exercise is diminished by endurance training. Am. J. Physiol. 274: E89–E95, 1998.

    PubMed  CAS  Google Scholar 

  45. Richter, E. A., B. Kiens, B. Saltin, N. J. Christensen, and G. Savard. Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am. J. Physiol. 254: E555–E561, 1988.

    PubMed  CAS  Google Scholar 

  46. Rodnick, K., W. Haskell, A. L. Swislocki, J. Foley, and G. Reaven. Improved insulin action in muscle, liver and adipose tissue in physically trained human subjects. Am. J. Physiol. 253: E489–E495, 1987.

    PubMed  CAS  Google Scholar 

  47. Roy, D., and A. Marette. Exercise induces the translocation of GLUT4 to transverse tubules from an intra-cellular pool in rat skeletal muscle. Biochem. Biophys. Res. Commun. 223: 147–152, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Schultz, T. A., S. B. Lewis, D. K. Westbis, J. E. Gerich, R. J. Rushakoff, and J. D. Wallin. Glucose delivery—a clarification of its role in regulating glucose uptake in rat skeletal muscle. Life Sci. 20: 733–736, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Sonne, B., K. Mikines, and H. Galbo. Glucose turnover in 48-hour-fasted running rats. Am. J. Phvsiol. 252: R587–R593, 1987.

    CAS  Google Scholar 

  50. Turcotte, L. P., E. A. Richter, and B. Kiens. Increased plasma FFA uptakeand oxidation during prolonged exercise in trained vs. untrained humans. Am. J. Physiol. 262: E791–E799, 1992.

    PubMed  CAS  Google Scholar 

  51. Wahren, J., P. Felig, G. Ahlborg, and L. Jorfeldt. Glucose Metabolism during leg exercise in man. J. Clin. Invest. 50: 2715–2725, 1971.

    Article  PubMed  CAS  Google Scholar 

  52. Wahren, J., P. Felig, and L. Hagenfeldt. Physical exercise and fuel homeostasis in diabetes mellitus. Diabctologia 14: 213–222, 1978.

    Article  CAS  Google Scholar 

  53. Watkins, S. C., A. Frederickson, R. Theriault, M. Korytkowski, D. S. Turner, and D. E. Kelley. Insulinstimulated GLUT4 translocation in human skeletal muscle: a quantitative confocal microscopical assessment. Histochem. J. 29: 91–96, 1997.

    Article  PubMed  CAS  Google Scholar 

  54. Wojtaszewski, J. F. P., A. B. Jacobsen, T. Ploug, and E. A. Richter. The perfused rat hindlimb is suitable for skeletal muscle glucose transport measurements. Am. J. Physiol. 214: E184–E191, 1998.

    Google Scholar 

  55. Yale, J., L. Leiter, and E. Marliss. Metabolic responses to intense exercise in lean and obese subjects. J. Clin. Endocrinol. Metab. 68: 438–445, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Zinman, B., E. Marliss, A. Hanna, H. Minuk, and M. Vranic. Exercise in diabetic man: glucose turnover and free insulin responses after glycemic normalization with intravenous insulin. Can. J. Physiol. Pharmacol. 60: 1236–1240, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richter, E.A. et al. (1998). Training Effects on Muscle Glucose Transport during Exercise. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics