Skip to main content

Abstract

The 26 S proteasome—discussed in Chapter 6—is the central protease of the ubiquitin pathway of protein degradation. The core of this 2-MDa enzyme is formed by the 20 S proteasome (Peters et al., 1993), a barrel-shaped protease of about 700 kDa, which is the subject of this chapter (Fig. 1). Whereas the 26 S proteasome degrades folded proteins in an ATP-dependent manner, the 20 S proteasome is ATP-independent and only degrades entirely unfolded polypeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo, A. P., Tanaka, K., Goldberg, A. L., and Welch, W. J., 1988, Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature 331:192–194.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W., Dahlmann, B., Hegerl, R., Kopp, F., Kuehn, L., and Pfeifer, G., 1988, Electron microscopy and image analysis of the multicatalytic protease, FEBS Lett. 241:239–245.

    Article  PubMed  CAS  Google Scholar 

  • Benoist, P., Muller, A., Diem, H. G., and Schwencke, J., 1992, High-molecular-mass multicatalytic proteinase complexes produced by the nitrogen-fixing actinomycete Frankia strain BR., J. Bacteriol. 174:1495–1504.

    PubMed  CAS  Google Scholar 

  • Bochtler, M., Ditzel, L., Groll, M., and Huber, R., 1997, Crystal structure of heat shock locus V (HslV) from Escherichia coli, Proc. Natl. Acad. Sci. USA 94:6070–6074.

    Article  PubMed  CAS  Google Scholar 

  • Brannigan, J. A., Dodson, G., Duggleby, H. J., Moody, P. C. E., Smith, J. L., Tomchick, D. R., and Murzin, A. G., 1995, A protein catalytic framework with an N-terminal nucleophile is capable of self-activation, Nature 378:416–419.

    Article  PubMed  CAS  Google Scholar 

  • Cardozo, C., 1993, Catalytic components of the bovine pituitary multicatalytic proteinase complex (proteasome), Enzyme Protein 47:296–305.

    PubMed  CAS  Google Scholar 

  • Cardozo, C., Vinitsky, A., Hidalgo, M. C., Michaud, C., and Orlowski, M., 1992, A 3,4-dichloroisocoumarin-resistant component of the multicatalytic proteinase complex, Biochemistry 31:7373–7380.

    Article  PubMed  CAS  Google Scholar 

  • Cardozo, C., Vinitsky, A., Michaud, C., and Orlowski, M., 1994, Evidence that the nature of amino acid residues in the P3 position directs substrates to distinct catalytic sites of the pituitary multicatalytic proteinase complex (proteasome), Biochemistry 33:6483–6489.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P., and Hochstrasser, M., 1995, Biogenesis, structure and function of the yeast 20S proteasome, EMBO J. 14:2620–2630.

    PubMed  CAS  Google Scholar 

  • Chen, P., and Hochstrasser, M., 1996, Autocatalytic subunit processing couples active-site formation in the 20S proteasome to completion of assembly, Cell 86:961–972.

    Article  PubMed  CAS  Google Scholar 

  • Coux, O., Tanaka, K., and Goldberg, A. L., 1996, Structure and functions of the 20S and 26S proteasomes, Annu. Rev. Biochem. 65:801–847.

    Article  PubMed  CAS  Google Scholar 

  • Dahlmann, B., Kopp, F., Kuehn, L., Niedel, B., Pfeifer, G., Hegerl, R., and Baumeister, W., 1989, The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria, FEBS Lett. 251:125–131.

    Article  PubMed  CAS  Google Scholar 

  • Dahlmann, B., Kuehn, L., Grziwa, A., Zwickl, P., and Baumeister, W., 1992, Biochemical properties of the proteasome from Thermoplasma acidophilum, Eur. J. Biochem. 208:789–797.

    Article  PubMed  CAS  Google Scholar 

  • Dick, L. R., Moomaw, C. R., Pramanik, B. C., DeMartino, G. N., and Slaughter, C. A., 1992, Identification and localization of a cysteinyl residue critical for the trypsin-like catalytic activity of the proteasome, Biochemistry 31:7347–7355.

    Article  PubMed  CAS  Google Scholar 

  • Dick, L. R., Aldrich, C., Jameson, S. C., Moomaw, C. R., Pramanik, B. C., Doyle, C. K., DeMartino, G. N., Bevan, M. J., Forman, J. M., and Slaughter, C. A., 1994, Proteolytic processing of ovalbumin and β-galactosidase by the proteasome to yield antigenic peptides, J. Immunol. 152:3884–3894.

    PubMed  CAS  Google Scholar 

  • Duggleby, H. J., Tolley, S. R., Hill, C. P., Dodson, E. J., Dodson, G., and Moody, P. C. E., 1995, Penicillin acylase has a single-amino-acid catalytic centre, Nature 373:264–265.

    Article  PubMed  CAS  Google Scholar 

  • Ehring, B., Meyer, T. H., Eckerskorn, C., Lottspeich, F., and Tampe, R., 1996, Effects of major-histocompatibility-complex-encoded subunits on the peptidase and proteolytic activities of human 20S proteasomes—Cleavage of proteins and antigenic peptides, Eur. J. Biochem. 235:404–415.

    Article  PubMed  CAS  Google Scholar 

  • Enenkel, C., Lehmann, H., Kipper, J., Guckel, R., Hilt, W., and Wolf, D. H., 1994, PRE3, highly homologous to the human major histocompatibility complex-linked LMP2 (RING12) gene, codes for a yeast proteasome subunit necessary for the peptidylglutamyl-peptide hydrolyzing activity, FEBS Lett. 341:193–196.

    Article  PubMed  CAS  Google Scholar 

  • Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J., and Schreiber, S. L., 1995, Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin, Science 268:726–731.

    Article  PubMed  CAS  Google Scholar 

  • Frentzel, S., Pesold, H. B., Seelig, A., and Kloetzel, P. M., 1994, 20S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13-16S preproteasome complexes, J. Mol. Biol. 236:975–981.

    Article  PubMed  CAS  Google Scholar 

  • Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R., 1997, Structure of the 20S proteasome from yeast at 2.4Å resolution, Nature 386:463–471.

    Article  PubMed  CAS  Google Scholar 

  • Grziwa, A., Baumeister, W., Dahlmann, B., and Kopp, F., 1991, Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy, FEBS Lett. 290:186–190.

    Article  PubMed  CAS  Google Scholar 

  • Grziwa, A., Maack, S., Puhler, G., Wiegand, G., Baumeister, W., and Jaenicke, R., 1994, Dissociation and reconstitution of the Thermoplasma proteasome, Eur. J. Biochem. 223:1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J. R., 1968, Release of a macromolecular protein component from human erythrocyte ghosts, Biochim. Biophys. Acta 150:534–537.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J. R., 1988, Erythrocyte cylindrin: Possible identity with the ubiquitous 20S high molecular weight protease complex and the prosome particle, Indian J. Biochem. Biophys. 25:459–466.

    PubMed  CAS  Google Scholar 

  • Hase, J., Kobashi, K., Nakai, N., Iwata, K., and Takadera, T., 1980, The quaternary structure of carp muscle alkaline protease, Biochim. Biophys. Acta 611:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer, W., Kleinschmidt, J. A., Saidowsky, J., Escher, C., and Wolf, D. H., 1991, Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: Mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival, EMBO J. 10:555–562.

    PubMed  CAS  Google Scholar 

  • Heinemeyer, W., Gruhler, A., Mohrle, V., Mahe, Y., and Wolf, D. H., 1993, PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chymotryptic activity and degradation of ubiquitinated proteins, J. Biol. Chem. 268:5115–5120.

    PubMed  CAS  Google Scholar 

  • Hilt, W., and Wolf, D. H., 1995, Proteasomes of the yeast Saccharomyces cerevisiae—Genes, structure and functions, Mol. Biol. Rep. 21:3–10.

    Article  PubMed  CAS  Google Scholar 

  • Hilt, W., Enenkel, C., Gruhler, A., Singer, T., and Wolf, D. H., 1993, The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide hydrolyzing activity. Mutations link the proteasome to stress-and ubiquitin-dependent proteolysis, J. Biol. Chem. 268:3479–3486.

    PubMed  CAS  Google Scholar 

  • Ishiura, S., Sano, M., Kamakura, K., and Sugita, H., 1985, Isolation of two forms of the high-molecular-mass serine protease, ingensin, from porcine skeletal muscle, FEBS Lett. 189:119–123.

    Article  PubMed  CAS  Google Scholar 

  • Joshua-Tor, L., Xu, H. E., Johnston, S. A., and Rees, D. C., 1995, Crystal structure of a conserved protease that binds DNA: The bleomycin hydrolase, Ga16, Science 269:945–950.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, M., Maurizi, M. R., Kim, B., Kocsis, E., Trus, B. L., Singh, S. K., and Steven, A. C., 1995, Homology in structural organization between Escherichia coli ClpAP protease and the eukaryotic 26S proteasome, J. Mol. Biol. 250:587–594.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, M., Wu, W., Gottesman, S., Kocsis, E., Steven, A. C., and Maurizi, M. R., 1996, Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY., FEBS Lett. 398:274–278.

    Article  PubMed  CAS  Google Scholar 

  • Kopp, F., Dahlmann, B., and Hendil, K. B., 1993, Evidence indicating that the human proteasome is a complex dimer, J. Mol. Biol. 229:14–19.

    Article  PubMed  CAS  Google Scholar 

  • Kopp, F., Kristensen, P., Hendil, K. B., Johnsen, A., Sobek, A., and Dahlmann, B., 1995, The human proteasome subunit hsn3 is located in the inner rings of the complex dimer, J. Mol. Biol. 248: 264–272.

    PubMed  CAS  Google Scholar 

  • Kopp, F., Hendil, K. B., Dahlmann, B., Kristensen, B., Sobek, A., and Uerkvitz, W., 1997, Subunit arrangement in the human 20S proteasome, Proc. Natl. Acad. Sci. USA 94:2939–2944.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L. W., Moomaw, C. R., Orth, K., McGuire, M. J., DeMartino, G. N., and Slaughter, C. A., 1990, Relationships among the subunits of the high molecular weight proteinase, macropain (proteasome), Biochim. Biophys. Acta 1037:178–185.

    Article  PubMed  CAS  Google Scholar 

  • Leibovitz, D., Koch, Y., Fridkin, M., Pitzer, F., Zwickl, P., Dantes, A., Daumeister, W., and Amsterdam, A., 1995, Archaebacterial and eukaryotic proteasomes prefer different sites in cleaving gonadotropin-releasing-hormone, J. Biol. Chem. 270:11029–11032.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, K. S., Davison, M. D., and Rivett, A. J., 1990, N-terminal sequence similarities between components of the multicatalytic proteinase complex, FEBS Lett. 262:327–329.

    Article  PubMed  CAS  Google Scholar 

  • Löwe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R., 1995, Crystal structure of the 20S proteasome from the archaeon Thermoplasma acidophilum at 3.4 Å resolution, Science 268: 533–539.

    Article  PubMed  Google Scholar 

  • Lupas, A., Zwickl, P., and Baumeister, W., 1994, Proteasome sequences in eubacteria, Trends Biochem. Sci. 19:533–534.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, M. J., and DeMartino, G. N., 1986, Purification and characterization of a high molecular weight proteinase (macropain) from human erythrocytes, Biochim. Biophys. Acta 873:279–289.

    Article  PubMed  CAS  Google Scholar 

  • Monaco, J. J., and McDevitt, H. O., 1984, H-2-linked low-molecular weight polypeptide antigens assemble into an unusual macromolecular complex, Nature 309:797–799.

    Article  PubMed  CAS  Google Scholar 

  • Nederlof, P. M., Wang, H. R., and Baumeister, W., 1995, Nuclear-localization signals of human and Thermoplasma proteasomal α-subunits are functional in vitro, Proc. Natl. Acad. Sci. USA 92: 12060–12064.

    Article  PubMed  CAS  Google Scholar 

  • Orlowski, M., and Wilk, W., 1988, Multicatalytic proteinase complex or multicatalytic proteinase: A high Mr endopeptidase, Biochem. J. 255:751.

    CAS  Google Scholar 

  • Orlowski, M., Cardozo, C., and Michaud, C., 1993, Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids, Biochemistry 32:1563–1572.

    Article  PubMed  CAS  Google Scholar 

  • Pamnani, V., Haas, B., Punier, G., Sanger, H. L., and Baumeister, W., 1994, Proteasome-associated RNAs are non-specific, Eur. J. Biochem. 225:511–519.

    Article  PubMed  CAS  Google Scholar 

  • Peters, J. M., Cejka, Z., Harris, J. R., Kleinschmidt, J. A., and Baumeister, W., 1993, Structural features of the 26S proteasome complex, J. Mol. Biol. 234:932–937.

    Article  PubMed  CAS  Google Scholar 

  • Pouch, M. N., Petit, F., Buri, J., Briand, Y., and Schmid, H. P., 1995, Identification and initial characterization of a specific proteasome (prosome) associated RNAse activity, J. Biol Chem. 270:22023–22028.

    Article  PubMed  CAS  Google Scholar 

  • Pühler, G., Weinkauf, S., Bachmann, L., Müller, S., Engel, A., Hegerl, R., and Baumeister, W., 1992, Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum, EMBO J. 11:1607–1616.

    PubMed  Google Scholar 

  • Pühler, G., Pitzer, F., Zwickl, P., and Baumeister, W., 1994, Proteasomes—Multisubunit proteinases common to Thermoplasma and eukaryotes, Syst. Appl. Microbiol. 16:734–741.

    Article  Google Scholar 

  • Rohrwild, M., Coux, O., Huang, H. C., Moerschell, R. P., Yoo, S. J., Seol, J. H., Chung, C. H., and Goldberg, A. L., 1996, HslV-HslU—A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome, Proc. Natl. Acad. Sci. USA 93:5808–5813.

    Article  PubMed  CAS  Google Scholar 

  • Rohrwild, M., Pfeifer, G., Santarius, U., Müller, S. A., Huang, H.-C., Engel, A., Baumeister, W., and Goldberg, A. L., 1997, The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome, Nature Struct. Biol. 4:133–139.

    Article  PubMed  CAS  Google Scholar 

  • Schauer, T. M., Nesper, M., Kehl, M., Lottspeich, F., Müller, T. A., Gerisch, G., and Baumeister, W., 1993, Proteasomes from Dictyostelium discoideum: Characterization of structure and function, J. Struct. Biol. 111:135–147.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, H. P., Akhayat, O., Martins De Sa, C., Puvion, F., Koehler, K., and Scherrer, K., 1984, The prosome: A ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing ScRNA and a characteristic set of proteins, EMBO J. 3:29–34.

    PubMed  CAS  Google Scholar 

  • Seemüller, E., Lupas, A., Zuhl, R., Zwickl, P., and Baumeister, W., 1995a, The proteasome from Thermoplasma acidophilum is neither a cysteine nor a serine protease, FEBS Lett. 359:173–178.

    Article  PubMed  Google Scholar 

  • Seemüller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W., 1995b, Proteasome from Thermoplasma acidophilum—A threonine protease, Science 268:579–582.

    Article  PubMed  Google Scholar 

  • Seemüller, E., Lupas, A., and Baumeister, W., 1996, Autocatalytic processing of the 20S proteasome, Nature 382:468–470.

    Article  PubMed  Google Scholar 

  • Stock, D., Nederlof, P., Seemüller, E., Baumeister, W., Huber, R., and Löwe, J., 1996, Proteasome: From structure to function, Curr. Opin. Biotech. 7:376–385.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, T., Nagy, I., Lupas, A., Lottspeich, R., Cejka, Z., Schoofs, G., Tanaka, K., Demot, R., and Baumeister, W., 1995, The first characterization of a eubacterial proteasome—The 20s complex of rhodococcus, Curr. Biol. 5:766–774.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, T., Tamura, N., Cejka, Z., Hegerl, R., Lottspeich, R., and Baumeister, W., 1996, Tricorn protease—the core of a modular proteolytic system, Science 274:1385–1389.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., 1995, Molecular biology of proteasomes, Mol. Biol. Rep. 21:21–26.

    Article  PubMed  CAS  Google Scholar 

  • Tsubuki, S., Saito, Y., Tomioka, M., Ito, H., and Kawashima, S., 1996, Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine, J. Biol. Chem. 119:572–576.

    CAS  Google Scholar 

  • Wenzel, T., and Baumeister, W., 1995, Conformational constraints in protein degradation by the 20S proteasome, Nature Struct. Biol. 2:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel, T., Eckerskorn, C., Lottspeich, R., and Baumeister, W., 1994, Existence of a molecular ruler in proteasomes suggested by analysis of degradation products, FEBS Lett. 349:205–209.

    Article  PubMed  CAS  Google Scholar 

  • Zolfaghari, R., Baker, C. R. R., Jr., Canizaro, P. C., Amirgholami, A., and Behal, R J., 1987, A high-molecular-mass neutral endopeptidase-24.5 from human lung, Biochem. J. 241:129–135.

    PubMed  CAS  Google Scholar 

  • Zühl, R., Tamura, T., Dolenc, I., Cejka, Z., Nagy, I., De Mot, R., and Baumeister, W., 1997a, Subunit topology of the Rhodococcus proteasome, FEBS Lett. 400:83–90.

    Article  PubMed  Google Scholar 

  • Zühl, F., Seemüller, E., Golbik, R., and Baumeister, W., 1997b, Dissecting the assembly pathway of the 20S proteasome. FEBS Lett. 418:189–194.

    Article  PubMed  Google Scholar 

  • Zwickl, P., Lottspeich, F., Dahlmann, B., and Baumeister, W., 1991, Cloning and sequencing of the gene encoding the large (α-) subunit of the proteasome from Thermoplasma acidophilum, FEBS Lett. 278:217–221.

    Article  PubMed  CAS  Google Scholar 

  • Zwickl, P., Grziwa, A., Pühler, G., Dahlmann, B., Lottspeich, R., and Baumeister, W., 1992, Primary structure of the Thermoplasma proteasome and its implication for the structure, function, and evolution of the multicatalytic proteinase, Biochemistry 31:964–972.

    Article  PubMed  CAS  Google Scholar 

  • Zwickl, P., Kleinz, J., and Baumeister, W., 1994, Critical elements in proteasome assembly, Nature Struct. Biol. 1:765–770.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lupas, A., Baumeister, W. (1998). The 20 S Proteasome. In: Peters, JM., Harris, J.R., Finley, D. (eds) Ubiquitin and the Biology of the Cell. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1922-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1922-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1924-3

  • Online ISBN: 978-1-4899-1922-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics