Skip to main content

Abstract

The ubiquitin/proteasome system is believed to be the major nonlysosomal proteolytic system of eukaryotic cells. It is present in the cytosol and the nucleus but apparently absent from the lumen of membrane-enclosed organelles, i. e., the endoplasmic reticulum, the Golgi and vesicular system, mitochondria, chloroplasts, and peroxisomes (for reviews see Finley and Chau, 1991; Jentsch, 1992a,b; Hershko and Ciechanover, 1992; Ciechanover, 1994; Hochstrasser, 1995; Smith et al., 1996). Substrates of this pathway include soluble proteins, subunits of oligomeric protein complexes, and integral membrane proteins. An important function of this pathway is the elimination of abnormal proteins (e. g., misfolded, misassembled) generated under normal and, in particular, stress conditions. Moreover, it is assumed that most naturally short-lived proteins of the cytosol and the nucleus are degraded by this pathway. Known substrates include proteins with important regulatory roles such as transcription factors, cell cycle regulators, and signal transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alagramam, K., Naider, F., and Becker, J. M., 1995, A recognition component of the ubiquitin system is required for peptide transport in Saccharomyces cerevisiae, Mol. Microbiol. 15:225–234.

    Article  PubMed  CAS  Google Scholar 

  • Amon, A., Tyers, M., Futcher, B., and Nasmyth, K., 1993, Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins, Cell 74:993–1007.

    Article  PubMed  CAS  Google Scholar 

  • Amon, A., Irniger, S., and Nasmyth, K., 1994, Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle, Cell 77:1037–1050.

    Article  PubMed  CAS  Google Scholar 

  • Aristarkhov, A., Eytan, E., Moghe, A., Admon, A., Hershko, A., and Ruderman, J. V., 1996, E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins, Proc. Natl. Acad. Sci. USA 93:4294–4299.

    Article  PubMed  CAS  Google Scholar 

  • Arnason, T., and Ellison, M. J., 1994, Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain, Mol. Cell. Biol. 14:7876–7883.

    PubMed  CAS  Google Scholar 

  • Ayusawa, D., Kaneda, S., Itoh, Y., Yasuda, H., Muramaki, Y., Sugasawa, K., Hanaoka, F., and Seno, T., 1992, Complementation by cloned human ubiquitin-activating enzyme E1 of the S-phase-arrested mouse FM3A cell mutant with thermolabile E1, Cell Struct. Funct. 17:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Bachmair, A., and Varshavsky, A., 1989, The degradation signal in a short-lived protein, Cell 56:1019–1032.

    Article  PubMed  CAS  Google Scholar 

  • Bachmair, A., Finley, D., and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue, Science 234:179–186.

    Article  PubMed  CAS  Google Scholar 

  • Bailly, V., Lamb, J., Sung, P., Prakash, S., and Prakash, L., 1994, Specific complex formation between yeast RAD6 and RAD18 proteins: A potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites, Genes Dev. 8:811–820.

    Article  PubMed  CAS  Google Scholar 

  • Ball, E., Karlik, C. C., Beall, C. J., Saville, D. L., Sparrow, J. C., Bullard, B., and Fryberg, E. A., 1987, Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate, Cell 51:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, B., Wiinning, I., and Varshavsky, A., 1990, The recognition component of the N-end rule pathway, EMBO J. 9:3179–3189.

    PubMed  CAS  Google Scholar 

  • Berleth, E. S., and Pickart, C. M., 1996, Mechanism of ubiquitin conjugating enzyme E2-230K: Catalysis involving a thiol relay? Biochemistry 35:1664–1671.

    Article  PubMed  CAS  Google Scholar 

  • Biederer, T., Volkwein, C., and Sommer, T., 1996, Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway, EMBO J. 15:2069–2076.

    PubMed  CAS  Google Scholar 

  • Chang, F., and Herskowitz, I., 1990, Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2, Cell 63:999–1011.

    Article  PubMed  CAS  Google Scholar 

  • Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A., 1989, A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243:1576–1583.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P., Johnson, P., Sommer, T., Jentsch, S., and Hochstrasser, M., 1993, Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor, Cell 74:357–369.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Hagler, J., Palombella, V. J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T., 1995, Signal-induced site-specific phosphorylation targets IKB α to the ubiquitin-proteasome pathway, Genes Dev. 9:1586–1597.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover, A., 1994, The ubiquitin-proteasome proteolytic pathway, Cell 79:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover, A., Elias, S., Heller, H., and Hershko, A., 1982, “Covalent affinity” purification of ubiquitin-activating enzyme, J. Biol. Chem. 257:2537–2542.

    PubMed  CAS  Google Scholar 

  • Cook, W. J., Jeffrey, L. C., Sullivan, M. L., and Vierstra, R. D., 1992, Three dimensional structure of a ubiquitin-conjugating enzyme (E2), J. Biol. Chem. 267:15116–15121.

    PubMed  CAS  Google Scholar 

  • Cook, W. J., Jeffrey, L. C., Xu, Y., and Chau, V., 1993, Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: Crystal structure of yeast Ubc4, Biochemistry 32: 13809–13817.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies, R. J., Chau, V., and Kirschner, M., 1995, Ubiquitination of the Gl cyclin Cln2p by a Cdc34p-dependent pathway, EMBO J. 14:303–312.

    PubMed  CAS  Google Scholar 

  • Dohmen, R. J., Madura, K., Bartel, B., and Varshavsky, A., 1991, The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme, Proc. Natl. Acad. Sci. USA 88:7351–7355.

    Article  PubMed  CAS  Google Scholar 

  • Dohmen, R. J., Stappen, R., McGrath, J. P., Forrova, H., Kolarov, J., Goffeau, A., and Varshavsky, A., 1995, An essential yeast gene encoding a homolog of ubiquitin-activating enzyme, J. Biol. Chem. 270:18099–18109.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., and Chau, V., 1991, Ubiquitination, Annu. Rev. Cell Biol. 7:25–69.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Özkaynak, E., and Varshavsky, A., 1987, The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses, Cell 48:1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Bartel, B., and Varshavsky, A., 1989, The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis, Nature 338:394–401.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., Crook, S. T., and Chau, V., 1994, Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant, Mol. Cell. Biol. 14:5501–5509.

    PubMed  CAS  Google Scholar 

  • Fitch, I., Dahmann, C., Surana, U., Amon, A., Nasmyth, K., Goetsch, L., Byers, B., and Futcher, B., 1992, Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae, Mol. Biol. Cell. 3:805–818.

    PubMed  CAS  Google Scholar 

  • Galan, J. M., Moreau, V., Andre, B., Volland, C., and Haguenauer-Tsapis, R., 1996, Ubiquitination mediated by the Npilp/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease, J. Biol. Chem. 271:10946–10952.

    Article  PubMed  CAS  Google Scholar 

  • Glotzer, M., Murray, A. W., and Kirschner, M. W., 1991, Cyclin is degraded by the ubiquitin pathway, Nature 349:132–138.

    Article  PubMed  CAS  Google Scholar 

  • Goebl, M. G., Yochem, J., Jentsch, S., McGrath, J. P., Varshavsky, A., and Byers, B., 1988, The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme, Science 241:1331–1335.

    Article  PubMed  CAS  Google Scholar 

  • Goldknopf, I. L., and Busch, H., 1977, Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24, Proc. Natl. Acad. Sci. USA 74:864–868.

    Article  PubMed  CAS  Google Scholar 

  • Haas, A. L., and Rose, I. A., 1982, The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis, J. Biol. Chem. 257:10329–10337.

    PubMed  CAS  Google Scholar 

  • Haas, A. L., Warms, J. V., Hershko, A., and Rose, I. A., 1982, Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation, J. Biol. Chem. 257:2543–2548.

    PubMed  CAS  Google Scholar 

  • Hadwiger, J. A., Wittenberg, C., Richardson, H. E., de Barros-Lopes, M., and Reed, S. I., 1989, A family of cyclin homologs that control the G1 phase in yeast, Proc. Natl. Acad. Sci. USA 86:6255–6259.

    Article  PubMed  CAS  Google Scholar 

  • Handley, P. M., Mueckler, M., Siegel, N. R., Ciechanover, A., and Schwarz, A. L., 1991, Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1, Proc. Natl. Acad. Sci. USA 88:258–262. (Erratum appeared in Proc. Natl. Acad. Sci. USA 88:7456)

    Article  PubMed  CAS  Google Scholar 

  • Hateboer, G., Hijmans, E. M., Nooij, J. B. D., Schlenker, S., Jentsch, S., and Bernads, R., 1996, mUBC9, a novel adenovirus E1A-interacting protein that complements a yeast cell cycle defect, J. Biol. Chem. 271:25906–25911.

    Article  PubMed  CAS  Google Scholar 

  • Hatfield, P. M., and Vierstra, R. D., 1992, Multiple forms of ubiquitin-activating enzyme E1 from wheat. Identification of an essential cysteine by in vitro mutagenesis, J. Biol. Chem. 267:14799–14803.

    PubMed  CAS  Google Scholar 

  • Hatfield, P. M., Callis, J., and Vierstra, R. D., 1990, Cloning of ubiquitin activating enzyme from wheat and expression of a functional protein in Escherichia coli, J. Biol. Chem. 265:15813–15817.

    PubMed  CAS  Google Scholar 

  • Heichman, K. A., and Roberts, J. M., 1996, The yeast CDC16 and CDC27 genes restrict DNA replication to once per cell cycle, Cell 85:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Hein, C., Springael, J.-Y., Volland, C., Haguenauer-Tsapis, R., and Andre, B., 1995, NPII, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase, Mol. Microbiol. 18:77–87.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., and Ciechanover, A., 1992, The ubiquitin system for protein degradation, Annu. Rev. Biochem. 61:761–807.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., Heller, H., Elias, S., and Ciechanover, A., 1983, Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown, J. Biol. Chem. 258:8206–8214.

    PubMed  CAS  Google Scholar 

  • Hicke, L., and Riezman, H., 1996, Ubiquitination of a yeast plasma membrane receptor signals its ligand stimulated endocytosis, Cell 84:277–287.

    Article  PubMed  CAS  Google Scholar 

  • Hingamp, P. M., Arnold, J. E., Mayer, R. J., and Dixon, L. K., 1992, A ubiquitin conjugating enzyme encoded by African swine fever virus, EMBO J. 11:361–366.

    PubMed  CAS  Google Scholar 

  • Hinnebusch, A. G., 1988, Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae, Microb. Rev. 52:248–273.

    CAS  Google Scholar 

  • Hinnebusch, A. G., 1994, Translational control of GCN4: An in vivo barometer of initiation-factor activity, Trends Biochem. Sci. 19:409–414.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., 1995, Ubiquitin, proteasomes, and the regulation of intracellular protein degradation, Curr. Opin. Cell Biol. 7:215–223.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., and Varshavsky, A., 1990, In vivo degradation of a transcriptional regulator: The yeast α2 repressor, Cell 61:697–708.

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse, J. M., Scheffner, M., and Howley, P. M., 1991, A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18, EMBO J. 10:4129–4135.

    PubMed  CAS  Google Scholar 

  • Huibregtse, J. M., Scheffner, M., and Howley, P. M., 1993, Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins, Mol. Cell. Biol. 13:4918–4927.

    PubMed  CAS  Google Scholar 

  • Huibregtse, J. M., Scheffner, M., Beaudenon, S., and Howley, P. M., 1995, A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase, Proc. Natl. Acad. Sci. USA 92:2563–2567.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, L. T., and Dayhoff, M. O., 1977, Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24, Biochem. Biophys. Res. Commun. 74:650–655.

    Article  PubMed  CAS  Google Scholar 

  • Imhof, M. O., and McDonnell, D., 1996, Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors, Mol. Cell. Biol. 16:2594–2605.

    PubMed  CAS  Google Scholar 

  • Irniger, S., Piatti, S., Michaelis, C., and Nasmyth, K., 1995, Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast, Cell 81:269–278.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, J. P., Bates, P. W., Yang, M., Vierstra, R. D., and Weissman, A. M., 1995a, Identification of a family of closely related human ubiquitin conjugating enzymes, J. Biol. Chem. 51:30408–30414.

    Google Scholar 

  • Jensen, T.J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R., 1995b, Multiple proteolytic systems, including the proteasome, contribute to CFTR processing, Cell 83:129–135.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S., 1992a, The ubiquitin-conjugation system, Annu. Rev. Genet. 26:179–207.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S., 1992b, Ubiquitin-dependent protein degradation: A cellular perspective, Trends Cell Biol. 2:98–103.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S., and Schlenker, S., 1996, Selective protein degradation: A journey’s end within the proteasome, Cell 82:881–884.

    Article  Google Scholar 

  • Jentsch, S., McGrath, J. P., and Varshavsky, A., 1987, The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme, Nature 329:131–134.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S., Seufert, W., Sommer, T., and Reins, H.-A., 1990. Ubiquitin-conjugating enzymes: Novel regulators of eukaryotic cells, Trends Biochem. Sci. 15:195–198.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S., Seufert, W., and Hauser, H.-P., 1991, Genetic analysis of the ubiquitin system, Biochim. Biophys. Acta 1089:127–139.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., Gonda, D. K., and Varshavsky, A., 1990, Cis-trans recognition and subunit-specific degradation of short-lived proteins, Nature 346:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., Ma, P. C., Ota, I. M., and Varshavsky, A., 1995, A proteolytic pathway that recognizes ubiquitin as a degradation signal, J. Biol. Chem. 270:17442–17456.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. S., Weber, S., and Prakash, L., 1988, The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence, Nucleic Acids Res. 16:7119–7131.

    Article  PubMed  CAS  Google Scholar 

  • Jungmann, J., Reins, H.-A., Schobert, C., and Jentsch, S., 1993, Resistance to cadmium mediated by ubiquitin-dependent proteolysis, Nature 361:369–371.

    Article  PubMed  CAS  Google Scholar 

  • Kang, X. L., Yadao, E., Gietz, R. D., and Kunz, B. A., 1992, Elimination of the yeast RAD6 ubiquitin conjugase enhances base-pair transitions and GC-TA transversions as well as transposition of the Ty element: Implications for the control of spontaneous mutation, Genetics 130:285–294.

    PubMed  CAS  Google Scholar 

  • Kastan, M. B., Zhan, Q., El-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B. S., Vogelstein, B., and Fornace, A. J., Jr., 1992, A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia, Cell 71:587–597.

    Article  PubMed  CAS  Google Scholar 

  • Kay, G. F., Ashworth, A., Penny, G. D., Dunlop, M., Swift, S., Brockdorff, N., and Rastan, S., 1991, A candidate spermatogenesis gene on the mouse Y chromosome is homologous to ubiquitin-activating enzyme E1, Nature 354:486–489.

    Article  PubMed  CAS  Google Scholar 

  • King, R. W., Peters, J. M., Tugendreich, S., Rolfe, M., Hieter, P., and Kirschner, M. W., 1995, A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B, Cell 81:279–288.

    Article  PubMed  CAS  Google Scholar 

  • Kok, K., Hofstra, R., Pilz, A., van den Berg, A., Terpstra, P., Buys, C. H. C. M., and Carrit, B., 1993, A gene in the chromosomal region 3p21 with greatly reduced expression in lung cancer is similar to the gene for ubiquitin-activating enzyme, Proc. Natl. Acad. Sci. USA 90:6071–6075.

    Article  PubMed  CAS  Google Scholar 

  • Koken, M. H. M., Reynolds, P., Jaspers-Dekker, I., Prakash, L., Prakash, S., Bootsma, D., and Hoeijmakers, J. H. J., 1991, Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6, Proc. Natl. Acad. Sci. USA 88:8865–8869.

    Article  PubMed  CAS  Google Scholar 

  • Kolman, C. J., Toth, J., and Gonda, D. K., 1992, Identification of a portable determinant of cell cycle function within the carboxyl-terminal domain of the yeast CDC34 (UBC3) ubiquitin-conjugating (E2) enzyme, EMBO J. 11:3081–3090.

    PubMed  CAS  Google Scholar 

  • Kornitzer, D., Raboy, B., Kulka, R. G., and Fink, G. R., 1994, Regulated degradation of the transcription factor Gcn4, EMBO J. 13:6021–6030.

    PubMed  CAS  Google Scholar 

  • Kovalenko, O. V., Plug, A. W., Haaf, T., Gonda, D. K., Ashley, T., Ward, D. C., Radding, C. M., and Golub, E. I., 1996, Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes, Proc. Natl. Acad. Sci. USA 93:2958–2963.

    Article  PubMed  CAS  Google Scholar 

  • Lahav-Baratz, S., Sudakin, V., Ruderman, J. V., and Hershko, A., 1995, Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase, Proc. Natl. Acad. Sci. USA 92:9303–9307.

    Article  PubMed  CAS  Google Scholar 

  • Lanker, S., Valdivieso, M. H., and Wittenburg, C., 1996, Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation, Science 271:1597–1601.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, C., 1994, The RAD6 DNA repair pathway in Saccharomyces cerevisiae: What does it do, and how does it do it? Bioessays 16:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Leyser, H. M. O., Lincoln, C. A., Timpte, C., Lammer, D., Turber, J., and Estelle, M., 1993, Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme El, Nature 364:161–164.

    Article  PubMed  CAS  Google Scholar 

  • Madura, K., and Varshavsky, A., 1994, Degradation of Gα by the N-end rule pathway, Science 265: 1454–1458.

    Article  PubMed  CAS  Google Scholar 

  • Madura, K., Dohmen, R. J., and Varshavsky, A., 1993, N-recognin/Ubc2 interactions in the N-end rule pathway, J. Biol. Chem. 268:12046.

    PubMed  CAS  Google Scholar 

  • Maltzman, W., and Czyzyk, L., 1984, UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells, Mol. Cell. Biol. 4:1689–1694.

    PubMed  CAS  Google Scholar 

  • Marsh, L., Neiman, A. M., and Herskowitz, I., 1991, Signal transduction during pheromone response in yeast, Annu. Rev. Cell Biol. 7:699–728.

    Article  PubMed  CAS  Google Scholar 

  • Matuschewski, K., Hauser, H.-P., Treier, M., and Jentsch, S., 1996, Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions, J. Biol. Chem. 271: 2789–2794.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, J. P., Jentsch, S., and Varshavsky, A., 1991, UBA1: An essential yeast gene encoding ubiquitin-activating enzyme, EMBO J. 10:227–236.

    PubMed  CAS  Google Scholar 

  • McKinney, J. D., Chang, F., Heintz, N., and Cross, F. R., 1993, Negative regulation of FAR1 at the Start of the yeast cell cycle, Genes Dev. 7:833–843.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, M. J., Woods, D. R., Tucker, P. K., Opp, J. S., and Bishop, C. E., 1991, Homology of a candidate spermatogenic gene from the mouse Y chromosome to the ubiquitin-activating enzyme E1, Nature 354:483–486.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, M. J., Woods, D. R., Wilcox, S. A., Graves, J. A. M., and Bishop, C. E., 1992, Marsupial Y chromosome encodes a homologue of the mouse Y-linked candidate spermatogenesis gene Ubely, Nature 359:528–531.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, A., Miller, E. J., and Prakash, L., 1988, Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae, Mol. Cell. Biol. 8:1179–1185.

    PubMed  CAS  Google Scholar 

  • Muralidhar, M. G., and Thomas, J. B., 1993, The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes, Neuron 11:253–266.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K., 1993, Control of the yeast cell cycle by the Cdc28 protein kinase, Curr. Opin. Cell Biol. 5:166–179.

    Article  PubMed  CAS  Google Scholar 

  • Nefsky, B., and Beach, D., 1996, Publ acts as an E5-AP-like protein ubiquitin ligase in the degradation of cdc25, EMBO J. 15:1301–1312.

    PubMed  CAS  Google Scholar 

  • Nishizawa, M., Okazaki, K., Furuno, N., Watanabe, N., and Sagata, N., 1992, The’ second codon rule’ and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes, EMBO J. 11:2433–2446.

    PubMed  CAS  Google Scholar 

  • Nishizawa, M., Furuno, N., Okazaki, K., Tanaka, H., Ogawa, Y., and Sagata, N., 1993, Degradation of mos by the N-terminal proline (pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: Possible significance of natural selection for pro2 in mos, EMBO J. 12:4021–4027.

    PubMed  CAS  Google Scholar 

  • Nuber, U., Schwarz, S., Kaiser, P., Schneider, R., and Scheffner, M., 1996, Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6-AP and RSP5, J. Biol. Chem. 271:2795–2800.

    Article  PubMed  CAS  Google Scholar 

  • Nugroho, T. T., and Mendenhall, M. D., 1994, An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells, Mol. Cell. Biol. 14: 3320–3328.

    PubMed  CAS  Google Scholar 

  • Oh, C. E., McMahon, R., Benzer, S., and Tanouye, M., 1994, bendless, a Drosophila gene affecting neuronal connectivity, encodes a ubiquitin-conjugating enzyme homolog, J. Neurosci. 14:3166–3179.

    PubMed  CAS  Google Scholar 

  • Özkaynak, E., Finley, D., Solomon, M. J., and Varshavsky, A., 1987, The yeast ubiquitin genes: A family of natural gene fusions, EMBO J. 6:1429–1439.

    PubMed  Google Scholar 

  • Paolini, R., and Kinet, J.-P., 1993, Cell surface control of the multiubiquitination and deubiquitination of high affinity immunoglobulin E receptors, EMBO J. 12:779–786.

    PubMed  CAS  Google Scholar 

  • Peter, M., and Herskowitz, I., 1994, Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Farl, Science 265:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  • Peter, M., Gartner, A., Horecka, J., Ammerer, G., and Herskowitz, I., 1993, FAR1 links the signal transduction pathway to the cell cycle machinery in yeast, Cell 73:747–760.

    Article  PubMed  CAS  Google Scholar 

  • Pickart, C. M., and Rose, I. A., 1985, Functional heterogeneity of ubiquitin carrier proteins, J. Biol. Chem. 260:1573–1581.

    PubMed  CAS  Google Scholar 

  • Picologlou, S., Brown, N., and Liebman, S. W., 1990, Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition, Mol. Cell. Biol. 10:1017–1022.

    PubMed  CAS  Google Scholar 

  • Prendergast, J. A., Ptak, C., Kornitzer, D., Steussy, C. N., Hodgins, R., Goebl, M., and Ellison, M. J., 1996, Identification of a positive regulator of the cell cycle ubiquitin-conjugating enzyme Cdc34 (Ubc3), Mol. Cell. Biol. 16:677–684.

    PubMed  CAS  Google Scholar 

  • Reynolds, P., Weber, S., and Prakash, L., 1985, RAD6 gene of Saccharomyces cerevisiae encodes a protein with 13 consecutive aspartates, Proc. Natl. Acad. Sci. USA 82:168–172.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, H. E., Wittenberg, C., Cross, F., and Reed, S. I., 1989, An essential G1 function for cyclin-like proteins in yeast, Cell 59:1127–1133.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, J. M., Salas, M. L., and Vinuela, E., 1992, Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus, Virology 186:40–52.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S., Wells, R., and Rechsteiner, M., 1986, Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis, Science 234:364–368.

    Article  PubMed  CAS  Google Scholar 

  • Sadis, S., Atienza, C., Jr., and Finley, D., 1995, Synthetic signals for ubiquitin-dependent proteolysis, Mol. Cell. Biol. 15:4086–4094.

    PubMed  CAS  Google Scholar 

  • Salama, S. R., Hendricks, K. B., and Thorner, J., 1994, Gl cyclin degradation: The PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover, Mol. Cell. Biol. 14:7953–7966.

    PubMed  CAS  Google Scholar 

  • Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M., 1993, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53, Cell 75:495–505.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Huibregtse, J. M., and Howley, P. M., 1994, Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53, Proc. Natl. Acad. Sci. USA 91:8797–8801.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Nuber, U., and Huibregtse, J. M., 1995, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade, Nature 373:81–83.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, B. L., Yang, Q-H., and Futcher, A. B., 1996, Linkage of replication to Start by the Cdk inhibitor Sic1, Science 272:560–562.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, R., Eckerskorn, C., Lottspeich, F., and Schweiger, M., 1990, The human ubiquitin carrier protein E2(Mr = 17 000) is homologous to the yeast DNA repair gene RAD6, EMBO J. 9:1431–1435.

    PubMed  CAS  Google Scholar 

  • Schork, S. M., Bee, G., Thumm, M., and Wolf, D. H., 1994, Catabolite inactivation of fructose-1,6-biphosphatase in yeast is mediated by the proteasome, FEBS Lett. 349:270–274.

    Article  PubMed  CAS  Google Scholar 

  • Schwob, E., and Nasmyth, K., 1993, CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae, Genes Dev. 7:1160–1175.

    Article  PubMed  CAS  Google Scholar 

  • Schwob, E., Bohm, T., Mendenhall, M. D., and Nasmyth, K., 1994, The B-type cyclin kinase inhibitor p40SICl controls the G1 to S transition in 5. cerevisiae, Cell 79:233–244. (Erratum appeared in Cell 84: Jan. 12, 1996)

    Article  PubMed  CAS  Google Scholar 

  • Seufert, W., and Jentsch, S., 1990, Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins, EMBO J. 9:543–550.

    PubMed  CAS  Google Scholar 

  • Seufert, W., McGrath, J. P., and Jentsch, S., 1990, UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation, EMBO J. 9:4535–4541.

    PubMed  CAS  Google Scholar 

  • Seufert, W., Futcher, B., and Jentsch, S., 1995, Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins, Nature 373:78–81.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin, J., Jabben, M., and Vierstra, R. D., 1987, Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation, Proc. Natl. Acad. Sci. USA 84:359–363.

    Article  PubMed  CAS  Google Scholar 

  • Silver, E. T., Gwozd, T. J., Ptak, C., Goebl, M., and Ellison, M. J., 1992, A chimeric ubiquitin-conjugating enzyme that combines the cell cycle properties of CDC34 (UBC3) and the DNA repair properties of RAD6 (UBC2): Implications for the structure, function and evolution of the E2s, EMBO J. 11:3091–3098.

    PubMed  CAS  Google Scholar 

  • Smith, S. E., Koegl, M., and Jentsch, S., 1996, Role of the ubiquitin/proteasome system in regulated protein degradation in Saccharomyces cerevisiae, Biol. Chem. 377:437–446.

    PubMed  CAS  Google Scholar 

  • Sommer, T., and Jentsch, S., 1993, A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum, Nature 365:176–179.

    Article  PubMed  CAS  Google Scholar 

  • Spence, J., Sadis, S., Haas, A. L., and Finley, D., 1995, A ubiquitin mutant with specific defects in DNA repair and multiubiquitination, Mol. Cell. Biol. 15:1265–1273.

    PubMed  CAS  Google Scholar 

  • Staub, O., Dho, S., Henry, P. C., Correa, J., Ishikawa, T., McGlade, J., and Rotin, D., 1996, WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome, EMBO J. 15:2371–2380.

    PubMed  CAS  Google Scholar 

  • Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F., Ruderman, J. V., and Hershko, A., 1995, The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis, Mol. Biol. Cell 6:185–198.

    PubMed  CAS  Google Scholar 

  • Sudol, M., Bork, P., Einbond, A., Kastury, K., Druck, T., Negrini, M., Huebner, K., and Lehman, D., 1995, Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain, J. Biol. Chem. 270:14733–14741.

    Article  PubMed  CAS  Google Scholar 

  • Sung, P., Prakash, S., and Prakash, L., 1988, The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity, Genes Dev. 2:1476–1485.

    Article  PubMed  CAS  Google Scholar 

  • Sung, P., Prakash, S., and Prakash, L., 1991a, Stable ester formation between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity, J. Mol. Biol. 221:745–749.

    Article  PubMed  CAS  Google Scholar 

  • Sung, P., Berleth, E., Pickart, C., Prakash, S., and Prakash, L., 1991b, Yeast RAD6 encoded ubiquitin conjugating enzyme mediates protein degradation dependent on the N-end-recognizing E3 enzyme, EMBO J. 10:2187–2193.

    PubMed  CAS  Google Scholar 

  • Surana, U., Robitsch, H., Price, C., Schuster, T., Fitch, I., Futcher, A. B., and Nasmyth, K., 1991, The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae, Cell 65:145–161.

    Article  PubMed  CAS  Google Scholar 

  • Treier, M., Seufert, W., and Jentsch, S., 1992, Drosophila UbcD1 encodes a highly conserved ubiquitin-conjugating enzyme involved in selective protein degradation, EMBO J. 11:367–372.

    PubMed  CAS  Google Scholar 

  • Treier, M., Staszewski, L. M., and Bohmann, D., 1994, Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain, Cell 78:787–798.

    Article  PubMed  CAS  Google Scholar 

  • van der Hoeven, F., Schimmang, T., Volkmann, A., Mattei, M.-G., Kyewski, B., and Rüther, U., 1994, Programmed cell death is affected in the mouse mutant Fused toes (Ft), Development 120:2601–2607.

    PubMed  Google Scholar 

  • Varshavsky, A., 1992, The N-end rule, Cell 69:725–735.

    Article  PubMed  CAS  Google Scholar 

  • Varshavsky, A., 1996, The N-end rule, Cold Spring Harbor Symp. Quant. Biol. 60:461–478.

    Article  Google Scholar 

  • Ward, C. L., Omura, S., and Kopito, R. R., 1995, Degradation of CFTR by the ubiquitin-proteasome pathway, Cell 83:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Wefes, I., Mastrandrea, L. D., Haldeman, M., Koury, S. T., Tamburlin, J., Pickart, C. M., and Finley, D., 1995, Induction of ubiquitin-conjugating enzymes during terminal erythroid differentation, Proc. Natl Acad. Sci. USA 92:4982–4986.

    Article  PubMed  CAS  Google Scholar 

  • Wiebel, F. F., and Kunau, W.-H., 1992, The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes, Nature 359:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Yaglom, J., Linskens, M. H., Sadis, S., Rubin, D. M., Futcher, B., and Finley, D., 1995, p34Cdc28-mediated control of Cln3 cyclin degradation, Mol. Cell. Biol. 15:731–741.

    PubMed  CAS  Google Scholar 

  • Yu, H., King, R. W., Peters, J.-M., and Kirschner, M. W., 1996, Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation, Curr. Biol. 6:455–466.

    Article  PubMed  CAS  Google Scholar 

  • Zacksenhaus, E., and Sheinin, R., 1990, Molecular cloning, primary structure and expression of the human X linked A1S9 gene cDNA which complements the ts A1S9 mouse L cell defect in DNA replication, EMBO J. 9:2923–2929.

    PubMed  CAS  Google Scholar 

  • Zhen, M., Heinlein, R., Jones, D., Jentsch, S., and Candido, E. P. M., 1993, The ubc2 gene of Caenorhabditis elegans encodes a ubiquitin-conjugating enzyme involved in selective protein degradation, Mol. Cell. Biol. 13:1371–1377.

    PubMed  CAS  Google Scholar 

  • Zhen, M., Schein, J. E., Baillie, D. L., and Candido, E. P. M., 1996, An essential ubiquitin-conjugating enzyme with tissue and developmental specificity in the nematode Caenorhabditis elegans, EMBO J. 15:3229–3237.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scheffner, M., Smith, S., Jentsch, S. (1998). The Ubiquitin-Conjugation System. In: Peters, JM., Harris, J.R., Finley, D. (eds) Ubiquitin and the Biology of the Cell. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1922-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1922-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1924-3

  • Online ISBN: 978-1-4899-1922-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics