Skip to main content

Role of the Ubiquitin—Proteasome Pathway in NF-κB Activation

  • Chapter
Ubiquitin and the Biology of the Cell

Abstract

The transcription factor NF-κB (nuclear factor κB) is a heterodimeric protein that plays a pivotal role in immune and inflammatory responses (for recent reviews see Verma et al., 1995; Finco and Baldwin, 1995; Thanos and Maniatis, 1995; Siebenlist et al., 1994; Baeuerle and Henkel, 1994). Both subunits of NF-κB (p50 and p65) are members of the Rel family of transcriptional activator proteins, but they differ in their modes of synthesis. The p65 subunit of NF-κB is produced as a mature protein, whereas the p50 subunit is generated by the proteolytic processing of a 105-kDa precursor protein (p105). The N-termini of p105 and p65 are homologous; both contain the Re1 homology region, which includes protein dimerization and DNA binding domains, and a nuclear localization signal (Fig. 1). In addition, the p65, but not the p50, subunit contains a transcriptional activation domain. The C-terminus of p105 is characterized by the presence of a sequence motif known as ankyrin repeats, and a PEST domain (Ghosh et al., 1990). Ankyrin repeats constitute a protein interaction domain (Gilligan and Bennett, 1993), and the PEST domain is associated with rapidly degraded proteins (Rechsteiner and Rogers, 1996). Proteolytic processing of p105 involves the degradation of the C-terminus containing the ankyrin repeats and PEST domain, leaving the 50-kDa N-terminal Re1 homology region intact (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J., and Stein, R., 1996, Novel inhibitors of the proteasome and their therapeutic use in inflammation, Ann. Rep. Med. Chem., in press.

    Google Scholar 

  • Alkalay, I., Yaron, A., Hatzubai, A., Jung, S., Avraham, A., Gerlitz, O., Pashut-Lavon, I., and Ben-Neriah, Y., 1995a, In vivo stimulation of IKB phosphorylation is not sufficient to activate NF-KB, Mol. Cell. Biol. 15:1294–1301.

    PubMed  CAS  Google Scholar 

  • Alkalay, I., Yaron, A., Hatzubai, A., Orian, A., Ciechanover, A., and Ben-Neriah, Y., 1995b, Stimulation-dependent IKBα phosphorylation marks the NF-KB inhibitor for degradation via the ubiquitin-proteasome pathway, Proc. Natl. Acad. Sci. USA 92:10599–10603.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, T., Sano, Y., Yamamoto, T., and Inoue, J.-I., 1996, The ankyrin repeats but not the PEST-like sequences are required for signal-dependent degradation of IKBα, Oncogene 12:1159–1164.

    PubMed  CAS  Google Scholar 

  • Arenzana-Seisdedos, F., Thompson, J., Rodriguez, M. S., Bachelerie, F., Thomas, D., and Hay, R. T., 1995, Inducible nuclear expression of newly synthesized IKBα negatively regulates DNA-binding and transcriptional activities of NF-KB, Mol. Cell. Biol. 15:2689–2696.

    PubMed  CAS  Google Scholar 

  • Baeuerle, P. A., and Baltimore, D., 1988, Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-KB transcription factor, Cell 53:211–217.

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle, P. A., and Henkel, T., 1994, Function and activation of NF-KB in the immune system, Annu. Rev. Immunol. 12:141–179.

    Article  PubMed  CAS  Google Scholar 

  • Baldassarre, F., Mallardo, M., Mezza, E., Scala, G., and Quinto, I., 1995, Regulation of NF-KB through the nuclear processing of p105 (NF-KB1) in Epstein-Barr virus-immortalized B cell lines, J. Biol. Chem. 270:31244–31248.

    Article  PubMed  CAS  Google Scholar 

  • Baldi, L., Brown, K., Franzoso, G., and Siebenlist, U., 1996, Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of IKBα, J. Biol. Chem. 271:376–379.

    Article  PubMed  CAS  Google Scholar 

  • Barroga, C. F., Stevenson, J. K., Schwarz, E. M., and Verma, I. M., 1995, Constitutive phosphorylation of IKBα by casein kinase II, Proc. Natl. Acad. Sci. USA 92:7637–7641.

    Article  PubMed  CAS  Google Scholar 

  • Beg, A. A., Finco, T. S., Nantermet, P. V., and Baldwin, A. S., Jr., 1993, Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IKB-α: A mechanism for NF-KB activation, Mol. Cell. Biol. 13:3301–3310.

    PubMed  CAS  Google Scholar 

  • Belvin, M. P., Jin, Y., and Anderson, K. V., 1995, Cactus protein degradation mediates Drosophila dorsal-ventral signaling, Genes Dev. 9:783–793.

    Article  PubMed  CAS  Google Scholar 

  • Brockman, J. A., Scherer, D. C., McKinsey, T. A., Hall, S. M., Qi, X., Lee, W. Y., and Ballard, D. W., 1995, Coupling of a signal response domain in IKBα to multiple pathways for NF-KB activation, Mol. Cell. Biol. 15:2809–2818.

    PubMed  CAS  Google Scholar 

  • Brown, K., Park, S., Kanno, T., Franzoso, G., and Siebenlist, U., 1993, Mutual regulation of the transcriptional activator NF-KB and its inhibitor, IKBα, Proc. Natl. Acad. Sci. USA 90:2532–2536.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K., Gerstberger, S., Carlson, L., Franzoso, G., and Siebenlist, U., 1995, Control of IKBα proteolysis by site-specific, signal-induced phosphorylation, Science 267:1485–1491.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. J., Hagler, J., Palombella, V. J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T., 1995, Signal-induced site-specific phosphorylation targets IKBα to the ubiquitin-proteasome pathway, Genes Dev. 9:1586–1597.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. J., Parent, L., and Maniatis, T., 1996, Site-specific phosphorylation of IKBα by a novel ubiquitination-dependent protein kinase activity, Cell 84:853–862.

    Article  PubMed  CAS  Google Scholar 

  • Chiao, P. J., Miyamoto, S., and Verma, I. M., 1994, Autoregulation of IKBα activity, Proc. Natl. Acad. Sci. USA 91:22–32.

    Article  Google Scholar 

  • Ciechanover, A., 1994, The ubiquitin-proteasome proteolytic pathway, Cell 79:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Cordle, S. R., Donald, R., Read, M. A., and Hawiger, J., 1993, Lipopolysaccharide induces phosphorylation of MAD-3 and activation of c-rel and related NF-KB proteins in human monocytic THP-1 cells, J. Biol. Chem. 268:11803–11810.

    PubMed  CAS  Google Scholar 

  • Devary, Y., Rosette, C., DiDonato, J. A., and Karin, M., 1993, NF-KB activation by ultraviolet light not dependent on a nuclear signal, Science 261:1442–1445.

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Meco, M. T., Dominguez, L. S., Dent, P., Lozano, J., Municio, M. M., Berra, E., Hay, R. T., Sturgill, T. W., and Moscat, J., 1994, ξPKC induces phosphorylation and inactivation of IKB-α in vitro, EMBO J. 13:2842–2848.

    PubMed  CAS  Google Scholar 

  • DiDonato, J. A., Mercurio, F., and Karin, M., 1995, Phosphorylation of IKBα precedes but is not sufficient for its dissociation from NF-KB, Mol. Cell. Biol. 15:1302–1311.

    PubMed  CAS  Google Scholar 

  • DiDonato, J. A., Mercurio, F., Rosette, C., Wu-Li, J., Suyang, H., Ghosh, S., and Karin, M., 1996, Mapping of the inducible IKB phosphorylation sites that signal its ubiquitination and degradation, Mol. Cell. Biol. 16:1295–1304.

    PubMed  CAS  Google Scholar 

  • Donald R., Ballard, D. W., and Hawiger, J., 1995, Proteolytic processing of NF-KB/IKB in human monocytes, J. Biol. Chem. 270:9–12.

    Article  PubMed  CAS  Google Scholar 

  • Dushay, M. S., Asling, B., and Hultmark, D., 1996, Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila, Proc. Natl. Acad. Sci. USA, 93:10343–10347.

    Article  PubMed  CAS  Google Scholar 

  • Fan, C.-M., and Maniatis, T., 1991, Generation of p50 subunit of NF-KB by processing of p105 through an ATP-dependent pathway, Nature 354:395–398.

    Article  PubMed  CAS  Google Scholar 

  • Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J., and Schreiber, S. L., 1995, Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin, Science 268:726–731.

    Article  PubMed  CAS  Google Scholar 

  • Finco, T. S., and Baldwin, A. S., Jr., 1993, KB site-dependent induction of gene expression by diverse inducers of nuclear factor KB requires Raf-1, J. Biol. Chem. 268:17676–17679.

    PubMed  CAS  Google Scholar 

  • Finco, T. S., and Baldwin, A. S., Jr., 1995, Mechanistic aspects of NF-KB regulation: The emerging role of phosphorylation and proteolysis, Immunity 3:263–272.

    Article  PubMed  CAS  Google Scholar 

  • Finco, T. S., Beg, A. A., and Baldwin, A. S., Jr., 1994, Inducible phosphorylation of IKBα is not sufficient for its dissociation from NF-KB and is inhibited by protease inhibitors, Proc. Natl. Acad. Sci. USA 91:11884–11888.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, K., Yasuda, H., Sato, Y., and Yamamoto, K., 1995, A role for phosphorylation in the proteolytic processing of human NF-KB1 precursor, Gene 165:183–189.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, R., Bergmann, A., Hiromi, Y., and Nusslein-Volhard, C., 1992, Cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IKB gene family of vertebrates, Cell 71:613–621.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., and Baltimore, D., 1990, Activation in vitro of NF-KB by phosphorylation of its inhibitor IKB, Nature 344:678–682.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., Gifford, A. M., Riviere, L. R., Tempst, P., Nolan, G. P., and Baltimore, D., 1990, Cloning of the p50 DNA binding subunit of NF-KB: Homology to rel and dorsal, Cell 62:1019–1029.

    Article  PubMed  CAS  Google Scholar 

  • Gilligan, D., and Bennett, V., 1993, The spectrin-based membrane skeleton and micron-scale organization of the plasmid membrane, Annu. Rev. Cell Biol. 9:27–66.

    Article  PubMed  Google Scholar 

  • Grumont, R. J., and Gerondakis, S., 1994, Alternative splicing of RNA transcripts encoded by the murine p105 NF-KB gene generates IKBα isoforms with different inhibitory activities, Proc. Natl. Acad. Sci. USA 91:4367–4371.

    Article  PubMed  CAS  Google Scholar 

  • Harhaj, E. W., Maggirwar, S. B., and Sun, S. C., 1996, Inhibition of p105 processing by NF-KB proteins in transiently transfected cells, Oncogene 12:2385–2392.

    PubMed  CAS  Google Scholar 

  • Henkel, T., Machleidt, T., Alkalay, I., Kronke, M., Ben-Neriah, Y., and Baeuerle, P. A., 1993, Rapid proteolysis of IKB-α is necessary in the activation of transcription factor NF-KB, Nature 365:182–185.

    Article  PubMed  CAS  Google Scholar 

  • Hirano, M., Osada, S.-L., Aoki, T., Hirai, S.-L., Hosaka, M., Inoue, J.-L., and Ohno, S., 1996, MEK kinase is involved in tumor necrosis factor α-induced NF-KB activation and degradation of IKBα, J. Biol. Chem. 271:13234–13238.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, H., Huang, J., Shu, H.-B., Baichwal, V., and Goeddel, D., 1996, TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex, Immunity 4:387–396.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, J., Kerr, L. D., Kakizuka, A., and Verma, I. M., 1992, IKBγ, a 70 kD protein identical to the C-terminal half of p110 NF-KB: A new member of the IKB family, Cell 68:1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S.-M., Tran, A.-C., Grilli, M., and Lenardo, M. J., 1992, NF-KB subunit regulation in non-transformed CD4+ T lymphocytes, Science 256:1452–1455.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., Hague, J., Lacoste, J., Hiscott, J., and Williams, B. R. G., 1994, Double-stranded RNA-dependent protein kinase activates transcription factor NF-KB by phosphorylating IKB, Proc. Natl. Acad. Sci. USA 91:6288–6297.

    Article  PubMed  CAS  Google Scholar 

  • Kuno, K., Ishikawa, Y., Ernst, M. K., Ogata, M., Rice, N. R., Mukaida, N., and Matsushima, K., 1995, Identification of an IKBα-associated protein kinase in a human monocytic cell line and determination of its phosphorylation sites on IKBα, J. Biol. Chem. 270:27914–27919.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., and Sedivy, J. M., 1993, Raf-1 protein kinase activates the NF-KB transcription factor by dissociating the cytoplasmic NF-KB-IKB complex, Proc. Natl. Acad. Sci. USA 90:9247–9251.

    Article  PubMed  CAS  Google Scholar 

  • Lin, L., and Ghosh, S., 1996, A glycine-rich region of NF-KB p105 functions as a processing signal for the generation of the p50 subunit, Mol. Cell. Biol. 16:2248–2254.

    PubMed  CAS  Google Scholar 

  • Lin, Y.-C., Brown, K., and Siebenlist, U., 1995, Activation of NF-KB requires proteolysis of the inhibitor IKB-α: Signal-induced phosphorylation of IKB-α alone does not release active NF-KB, Proc. Natl. Acad. Sci. USA 92:552–556.

    Article  PubMed  CAS  Google Scholar 

  • McElhinny, J. A., Trushin, S. A., Bren, G., Chester, N., and Paya, C., 1996, Casein kinase II phosphorylates IKBα at S-283, S-289, and T-291 and is required for its degradation, Mol. Cell. Biol. 16:899–906.

    PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Brockman, J. A., Scherer, D. C., Al-Murrani, S. A., Green, P. L., and Ballard, D. W., 1996, Inactivation of IKBβ by the Tax protein of human T-cell leukemia virus type 1: A potential mechanism for constitutive induction of NF-KB, Mol. Cell. Biol. 16:2083–2090.

    PubMed  CAS  Google Scholar 

  • Mellits, K. H., Hay, R. T., and Goodbourn, S., 1993, Proteolytic degradation of MAD3 (IKBα) and enhanced processing of the NF-KB precursor p105 are obligatory steps in the activation of NF-KB, Nucleic Acids Res. 21:5059–5066.

    Article  PubMed  CAS  Google Scholar 

  • Mercurio, F., DiDonato, J. A., Rosette, C., and Karin, M., 1993, p105 and p98 precursor proteins play an active role in NF-KB-mediated signal transduction, Genes Dev. 7:705–718.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, C. F., Wang, X., Chang, C., Templeton, D., and Tan, T.-H., 1996, Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase 1 signaling cascade in mediating KB enhancer activation, J. Biol. Chem. 271:8971–8976.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, S., Maki, M., Schmitt, M. J., Hatanaka, M., and Verma, I. M., 1994, Tumor necrosis factor α-induced phosphorylation of IKBα is a signal for its degradation but not dissociation from NF-KB, Proc. Natl. Acad. Sci. USA 91:12740–12744.

    Article  PubMed  CAS  Google Scholar 

  • Naumann, M., and Scheidereit, C., 1994, Activation of NF-KB in vivo is regulated by multiple phosphorylations, EMBO J. 13:4597–4607.

    PubMed  CAS  Google Scholar 

  • Naumann, M., Wulczyn, F. G., and Scheidereit, C., 1993, The NF-KB precursor p105 and the proto-oncogene product Bcl-3 are IKB molecules and control nuclear translocation of NF-KB, EMBO J. 12:213–222.

    PubMed  CAS  Google Scholar 

  • Nuber, U., Schwarz, S., Kaiser, P., Schneider, R., and Scheffner, M., 1996, Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6AP and RSP5, J. Biol. Chem. 271:2795–2800.

    Article  PubMed  CAS  Google Scholar 

  • Orian, A., Whiteside, S., Israel, A., Stancovski, I., Schwartz, A. L., and Ciechanover, A., 1995, Ubiquitin-mediated processing of NF-KB transcriptional activator precursor p105, J. Biol. Chem. 270:21707–21714.

    Article  PubMed  CAS  Google Scholar 

  • Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T., 1994, The ubiquitin-proteasome pathway is required for processing the NF-KB1 precursor protein and the activation of NF-KB, Cell 78:773–785.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M., and Rogers, S. W., 1996, PEST sequences and regulation by proteolysis, Trends Biochem. Sci. 247:267–271.

    Google Scholar 

  • Rice, N. R., and Ernst, M. K., 1993, In vivo control of NF-KB activation by IKBα, EMBO J. 12:4685–4695.

    PubMed  CAS  Google Scholar 

  • Rice, N. R., Mackichan, M. L., and Israel, A., 1992, The precursor of NF-KB p50 has IKB-like functions, Cell 71:243–253.

    Article  PubMed  CAS  Google Scholar 

  • Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L., 1994, Inhibitors of the proteasome block degradation of most cell proteins and the generation of peptides presented on MHC class I molecules, Cell 78:761–771.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Michalopoulos, I., Arenzana-Seisdedos, F., and Hay, R. T., 1995, Inducible degradation of IKBα in vitro and in vivo requires the acidic C-terminal domain of the protein, Mol. Cell. Biol. 15:2413–2419.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Wright, J., Thompson, J., Thomas, D., Baleuz, F., Virelizier, J. L., Hay, R. T., and Arenzana-Seisdedos, F., 1996, Identification of lysine residues required for signal-induced ubiquitination and degradation of IKBα in vivo, Oncogene 12:2425–2435.

    PubMed  CAS  Google Scholar 

  • Roff, M., Thompson, J., Rodriguez, M. S., Jacque, J. M., Baleux, F., Arenzana-Seisdedos, F., and Hay, R. T., 1996, Role of IKBα ubiquitination in signal-induced activation of NF-KB in vivo, J. Biol. Chem. 271:7844–7850.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M., 1993, The HPV-16 E6 and E6AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53, Cell 75:495–505.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, D. C., Brockman, J. A., Chen, Z. J., Maniatis, T., and Ballard, D., 1995, Signal-induced degradation of IKBα requires site-specific ubiquitination, Proc. Natl. Acad. Sci. USA 92:11259–11263.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, K. N., Traenckner, E. B.-M., Meier, B., and Baeuerle, P. A., 1995, Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-KB, J. Biol. Chem. 270:27136–27142.

    Article  PubMed  CAS  Google Scholar 

  • Schreck, R., Rieber, P., and Baeuerle, P. A., 1991, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1, EMBO J. 10:2247–2258.

    PubMed  CAS  Google Scholar 

  • Schutze, S., Pothoff, K., Machleidt, T., Bercovic, D., Wiegmann, K., and Kronke, M., 1992, TNF activates NF-KB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown, Cell 71:765–776.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, E. M., Van Antwerp, D., and Verma, I. M., 1996, Constitutive phosphorylation of IKBα by casein kinase II occurs preferentially at serine 293: Requirement for degradation of free IKBα, Mol. Cell. Biol. 16:3554–3559.

    PubMed  CAS  Google Scholar 

  • Scott, M. L., Fujita, T., Liou, H. C., Nolan, G. P., and Baltimore, D., 1993, The p65 subunit of NF-KB regulates IKB by two distinct mechanisms, Genes Dev. 7:1266–1276.

    Article  PubMed  CAS  Google Scholar 

  • Sen, R., and Baltimore, D., 1986, Multiple nuclear factors interact with the immunoglobulin enhancer sequences, Cell 46:705–716.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, C. A., and Wasserman, S. A., 1993, pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo, Cell 72:515–525.

    Article  PubMed  CAS  Google Scholar 

  • Shirakawa, F., and Mizel, S. B., 1989, In vitro activation and nuclear translocation of NF-KB catalyzed by cyclic AMP-dependent protein kinase and protein kinase C., Mol. Cell. Biol. 9:2424–2430.

    PubMed  CAS  Google Scholar 

  • Siebenlist, U., Franzoso, G., and Brown, K., 1994, Structure, regulation and function of NF-KB, Annu. Rev. Cell Biol. 10:405–455.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S.-C., Ganchi, P. A., Ballard, D. W., and Greene, W. C., 1993, NF-KB controls expression of inhibitor IKBα: Evidence for an inducible autoregulatory pathway, Science 259:1912–1915.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S.-C., Elwood, J., and Greene, W. C., 1996, Both amino-and carboxyl-terminal sequences within IKBα regulate its inducible degradation, Mol. Cell. Biol. 16:1058–1065.

    PubMed  CAS  Google Scholar 

  • Thanos, D., and Maniatis, T., 1995, NF-KB: A lesson in family values, Cell 80:529–532.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. E., Phillips, R. J., Erdjument-Bromage, H., Tempst, P., and Ghosh, S., 1995, IKB-β regulates the persistent response in a biphasic activation of NF-KB, Cell 80:573–582.

    Article  PubMed  CAS  Google Scholar 

  • Traenckner, E. B.-M., Wilk, S., and Baeuerle, P. A., 1994, A proteasome inhibitor prevents activation of NF-KB and stabilizes a newly phosphorylated form of IKBα that is still bound to NF-KB, EMBO J. 13:5433–5441.

    PubMed  CAS  Google Scholar 

  • Traenckner, E. B.-M., Pahl, H. L., Henkel, T., Schmidt, K. N., Wilk, S., and Baeuerle, P. A., 1995, Phosphorylation of human IKBα on serines 32 and 36 controls IKBα proteolysis and NF-KB activation in response to diverse stimuli, EMBO J. 14:2876–2883.

    PubMed  CAS  Google Scholar 

  • Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van Antwerp, D., and Miyamoto, S., 1995, Rel/NF-KB/ IKB family: Intimate tales of association and dissociation, Genes Dev. 9:2723–2735.

    Article  PubMed  CAS  Google Scholar 

  • Whiteside, S. T., Ernst, M. K., LeBail, O., Laurent-Winter, C., Rice, N., and Israel, A., 1995, N-and C-terminal sequences control degradation of MAD3/IKBα in response to inducers of NF-KB activity, Mol. Cell. Biol. 15:5339–5345.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, Z.J., Maniatis, T. (1998). Role of the Ubiquitin—Proteasome Pathway in NF-κB Activation. In: Peters, JM., Harris, J.R., Finley, D. (eds) Ubiquitin and the Biology of the Cell. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1922-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1922-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1924-3

  • Online ISBN: 978-1-4899-1922-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics